[1] G.B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metall. Mater. Trans., A, 6(4) (1975) 791-795.
[2] R.G. Stringfellow, D.M. Parks, G.B. Olson, A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels, Acta. Metall. Mater., 40(7) (1992) 1703-1716.
[3] Y. Tomita, T. Iwamoto, Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties, Int. J. Mech. Sci., 37(12) (1995) 1295-1305.
[4] T. Iwamoto, T. Tsuta, Computational simulation of the dependence of the austenitic grain size on the deformation behavior of TRIP steels, Int. J. Plast., 16(7-8) (2000) 791-804.
[5] S.H. Li, W.J. Dan, W.G. Zhang, Z.Q. Lin, A model for strain-induced martensitic transformation of TRIP steel with pre-strain, Comput. Mater. Sci., 40(2) (2007) 292-299.
[6] J.A.C. Ramirez, T. Tsuta, Y. Mitani, K. Osakada, Flow stress and phase transformation analyses in the austenitic stainless steel under cold working: part 1, phase transformation characteristics and constitutive formulation by energetic criterion, JSME Int. J. Ser. 1, Solid Mech., Strength Mater., 35(2) (1992) 201-209.
[7] H.C. Shin, T.K. Ha, Y.W. Chang, Kinetics of deformation induced martensitic transformation in a 304 stainless steel, Scr. Mater., 45(7) (2001) 823- 829.
[8] C. Luo, J. Sun, W. Zeng, H. Yuan, Kinetics of deformation-induced martensitic transformation under cyclic loading conditions, Scr., Mater., 189 (2020) 53-57.
[9] C. Garion, B. Skoczen, Modeling of plastic straininduced martensitic transformation for cryogenic applications, J. Appl. Mech., 69(6) (2002) 755-762.
[10] G.B. Olson, M. Azrin, Transformation behavior of TRIP steels, Metall. Trans. A, 9(5) (1978) 713-721.
[11] T. Narutani, G. Olson, M. Cohen, Constitutive flow relations for austenitic steels during straininduced martensitic transformation, J. Phys. Colloq., 43(C4) (1982) C4-429-C4-434.
[12] G. Chappuis, A. Najafi-Zadeh, M. Harmelin, P. Lehr, Contribution of martenistic transformations to the plastic behavior and the mechanical properties of Cr, Ni austenitic stainless steels, MRS Online Proceedings Library Archive, 21 (1983) 699-704.
[13] T.S. Byun, I.S. Kim, Stress and strain partition in elastic and plastic deformation of two phase alloys, J. Mater. Sci., 26(14) (1991) 3917-3925.
[14] F. Rieger, T. Böhlke, Microstructure based prediction and homogenization of the strain hardening behavior of dual-phase steel, Arch. Appl. Mech., 85(9) (2015) 1439-1458.
[15] J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 241(1226) (1957) 376-396.
[16] Y. Tomita, T. Iwamoto, Computational prediction of deformation behavior of TRIP steels under cyclic loading, Int. J. Mech. Sci., 43(9) (2001) 2017-2034.
[17] J. Serri, M. Martiny, G. Ferron, Finite element analysis of the effects of martensitic phase transformation in TRIP steel sheet forming, Int. J. Mech. Sci., 47(6) (2005) 884-901.
[18] I. Papatriantafillou, M. Agoras, N. Aravas, G. Haidemenopoulos, Constitutive modeling and finite element methods for TRIP steels, Comput. Methods Appl. Mech. Eng., 195(37-40) (2006) 5094-5114.
[19] R. Zaera, J.A. Rodríguez-Martínez, A. Casado, J. Fernández-Sáez, A. Rusinek, R. Pesci, A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates, Int. J. Plast., 29 (2012) 77-101.
[20] W.J. Dan, W.G. Zhang, S.H. Li, Z.Q. Lin, A model for strain-induced martensitic transformation of TRIP steel with strain rate, Comput. Mater. Sci., 40(1) (2007) 101-107.
[21] Z. Mróz, G. Ziętek, Modeling of cyclic hardening of metals coupled with martensitic transformation, Arch. Mech., 59(1) (2007) 3-20.
[22] W. Zeng, H. Yuan, Mechanical behavior and fatigue performance of austenitic stainless steel under consideration of martensitic phase transformation, Mater. Sci. Eng. A, 679 (2017) 249-257.
[23] H. Ding, Y. Wu, Q. Lu, Y. Wang, J. Zheng, P. Xu, A modified stress-strain relation for austenitic stainless steels at cryogenic temperatures, Cryogenics, 101 (2019) 89-100.
[24] R. Mahnken, A. Schneidt, A thermodynamics framework and numerical aspects for transformation-induced plasticity at large strains, Arch. Appl. Mech., 80(3) (2010) 229-253.
[25] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21(5) (1973) 571-574.
[26] C. Garion, B. Skoczen, Combined model of straininduced phase transformation and orthotropic damage in ductile materials at cryogenic temperatures, Int. J. Damage Mech., 12(4) (2003) 331-356.
[27] H. Egner, B. Skoczeń, Ductile damage development in two-phase metallic materials applied at cryogenic temperatures, Int. J. Plast., 26(4) (2010) 488-506.
[28] H. Egner, B. Skoczeń, M. Ryś, Constitutive and numerical modeling of coupled dissipative phenomena in 316L stainless steel at cryogenic temperatures, Int. J. Plast., 64 (2015) 113-133.
[29] J. Tabin, B. Skoczen, J. Bielski, Discontinuous plastic flow coupled with strain induced fcc–bcc phase transformation at extremely low temperatures, Mech. Mater., 129 (2019) 23-40.
[30] B. Skoczeń, Functionally graded structural members obtained via the low temperature strain induced phase transformation, Int. J. Solids Struct., 44(16) (2007) 5182-5207.
[31] M. Sitko, B. Skoczeń, A. Wróblewski, FCC–BCC phase transformation in rectangular beams subjected to plastic straining at cryogenic temperatures, Int. J. Mech. Sci., 52(7) (2010) 993-1007.
[32] M. Sitko, B. Skoczeń, Effect of γ -α′ phase transformation on plastic adaptation to cyclic loads at cryogenic temperatures, Int. J. Solids Struct., 49(3-4) (2012) 613-634.
[33] R. Ortwein, B. Skoczeń, J.P. Tock, Micromechanics based constitutive modeling of martensitic transformation in metastable materials subjected to torsion at cryogenic temperatures, Int. J. Plast., 59 (2014) 152-179.
[34] M. Ryś, Modeling of damage evolution and martensitic transformation in austenitic steel at cryogenic temperature, Arch. Mech. Eng., 4 (2015) 523-537.
[35] R. Ortwein, M. Ryś, B. Skoczeń, Damage evolution in a stainless steel bar undergoing phase transformation under torsion at cryogenic temperatures, Int. J. Damage Mech., 25(7) (2016) 967-1016.
[36] H. Egner, M. Ryś, Total energy equivalence in constitutive modeling of multidissipative materials, Int. J. Damage Mech., 26(3) (2017) 417-446.
[37] S.S. Kazemi, M. Homayounfard, M. Ganjiani, N. Soltani, Numerical and experimental analysis of damage evolution and martensitic transformation in AISI 304 austenitic stainless steel at cryogenic temperature, Int. Appl. Mech., 11(02) (2019) 1950012.
[38] K. Nalepka, B. Skoczeń, M. Ciepielowska, R. Schmidt, J. Tabin, E. Schmidt, W. ZwolińskaFaryj, R. Chulist, Phase Transformation in 316L austenitic steel induced by fracture at cryogenic temperatures: experiment and modelling, Materials, 14(1) (2021) 127.
[39] F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, A new view on transformation induced plasticity (TRIP), Int. J. Plast., 16(7-8) (2000) 723-748.
[40] E.A. de Souza Neto, D. Peric, D.R. Owen, Computational methods for plasticity: theory and applications, John Wiley and Sons, (2008).
[41] J.W. Morris Jr, J.W. Chan, Z. Mei, The influence of deformation-induced martensite on the cryogenic behavior of 300-series stainless steels, Lawrence Berkeley Lab., CA (United States), (1992) LBL-32095.
[42] C. Garion, B. Skoczeń, S. Sgobba, Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures, Int. J. Plast., 22(7) (2006) 1234-1264.