A Simplified Model of the Strain-Induced Phase Transformation in Austenitic Stainless Steels for Low Temperature Applications

Document Type : Original Research Paper


Mechanical Engineering Department, College of Engineering, University of Tehran, Tehran, Iran.


Austenitic stainless steels are commonly used in low temperature applications because of their mechanical properties specially preserving the ductility. The strain-induced martensitic transformation greatly affects the plastic behavior of the metastable austenitic stainless steels. This paper provides a simple constitutive model for considering the strain-induced martensitic transformation of the metastable austenitic stainless steels at low temperature. A modified kinetics model is represented to consider the effect of TRIP in martensite evolution explicitly. In addition, a modified power law hardening for the continuously reforming material is represented to describe the great hardening effect of the phase transformation. Developing an incremental integration algorithm, the constitutive model was implemented in the Abaqus/Standard via a user-defiened material subroutine (UMAT). The results showed that the rate of martensite evolution with plastic strain in the modified model is accelerated which significantly affects the plastic behavior. In addition, the hardening behavior could be well described with the modified power law. Numerical examples show the capability of the constituative model in simulating the strain-induced transformation at low temperatures.


[1] G.B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metall. Mater. Trans., A, 6(4) (1975) 791-795.
[2] R.G. Stringfellow, D.M. Parks, G.B. Olson, A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels, Acta. Metall. Mater., 40(7) (1992) 1703-1716.
[3] Y. Tomita, T. Iwamoto, Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties, Int. J. Mech. Sci., 37(12) (1995) 1295-1305.
[4] T. Iwamoto, T. Tsuta, Computational simulation of the dependence of the austenitic grain size on the deformation behavior of TRIP steels, Int. J. Plast., 16(7-8) (2000) 791-804.
[5] S.H. Li, W.J. Dan, W.G. Zhang, Z.Q. Lin, A model for strain-induced martensitic transformation of TRIP steel with pre-strain, Comput. Mater. Sci., 40(2) (2007) 292-299.
[6] J.A.C. Ramirez, T. Tsuta, Y. Mitani, K. Osakada, Flow stress and phase transformation analyses in the austenitic stainless steel under cold working: part 1, phase transformation characteristics and constitutive formulation by energetic criterion, JSME Int. J. Ser. 1, Solid Mech., Strength Mater., 35(2) (1992) 201-209.
[7] H.C. Shin, T.K. Ha, Y.W. Chang, Kinetics of deformation induced martensitic transformation in a 304 stainless steel, Scr. Mater., 45(7) (2001) 823- 829.
[8] C. Luo, J. Sun, W. Zeng, H. Yuan, Kinetics of deformation-induced martensitic transformation under cyclic loading conditions, Scr., Mater., 189 (2020) 53-57.
[9] C. Garion, B. Skoczen, Modeling of plastic straininduced martensitic transformation for cryogenic applications, J. Appl. Mech., 69(6) (2002) 755-762.
[10] G.B. Olson, M. Azrin, Transformation behavior of TRIP steels, Metall. Trans. A, 9(5) (1978) 713-721.
[11] T. Narutani, G. Olson, M. Cohen, Constitutive flow relations for austenitic steels during straininduced martensitic transformation, J. Phys. Colloq., 43(C4) (1982) C4-429-C4-434.
[12] G. Chappuis, A. Najafi-Zadeh, M. Harmelin, P. Lehr, Contribution of martenistic transformations to the plastic behavior and the mechanical properties of Cr, Ni austenitic stainless steels, MRS Online Proceedings Library Archive, 21 (1983) 699-704.
[13] T.S. Byun, I.S. Kim, Stress and strain partition in elastic and plastic deformation of two phase alloys, J. Mater. Sci., 26(14) (1991) 3917-3925.
[14] F. Rieger, T. Böhlke, Microstructure based prediction and homogenization of the strain hardening behavior of dual-phase steel, Arch. Appl. Mech., 85(9) (2015) 1439-1458.
[15] J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 241(1226) (1957) 376-396.
[16] Y. Tomita, T. Iwamoto, Computational prediction of deformation behavior of TRIP steels under cyclic loading, Int. J. Mech. Sci., 43(9) (2001) 2017-2034.
[17] J. Serri, M. Martiny, G. Ferron, Finite element analysis of the effects of martensitic phase transformation in TRIP steel sheet forming, Int. J. Mech. Sci., 47(6) (2005) 884-901.
[18] I. Papatriantafillou, M. Agoras, N. Aravas, G. Haidemenopoulos, Constitutive modeling and finite element methods for TRIP steels, Comput. Methods Appl. Mech. Eng., 195(37-40) (2006) 5094-5114.
[19] R. Zaera, J.A. Rodríguez-Martínez, A. Casado, J. Fernández-Sáez, A. Rusinek, R. Pesci, A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates, Int. J. Plast., 29 (2012) 77-101.
[20] W.J. Dan, W.G. Zhang, S.H. Li, Z.Q. Lin, A model for strain-induced martensitic transformation of TRIP steel with strain rate, Comput. Mater. Sci., 40(1) (2007) 101-107.
[21] Z. Mróz, G. Ziętek, Modeling of cyclic hardening of metals coupled with martensitic transformation, Arch. Mech., 59(1) (2007) 3-20.
[22] W. Zeng, H. Yuan, Mechanical behavior and fatigue performance of austenitic stainless steel under consideration of martensitic phase transformation, Mater. Sci. Eng. A, 679 (2017) 249-257.
[23] H. Ding, Y. Wu, Q. Lu, Y. Wang, J. Zheng, P. Xu, A modified stress-strain relation for austenitic stainless steels at cryogenic temperatures, Cryogenics, 101 (2019) 89-100.
[24] R. Mahnken, A. Schneidt, A thermodynamics framework and numerical aspects for transformation-induced plasticity at large strains, Arch. Appl. Mech., 80(3) (2010) 229-253.
[25] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21(5) (1973) 571-574.
[26] C. Garion, B. Skoczen, Combined model of straininduced phase transformation and orthotropic damage in ductile materials at cryogenic temperatures, Int. J. Damage Mech., 12(4) (2003) 331-356.
[27] H. Egner, B. Skoczeń, Ductile damage development in two-phase metallic materials applied at cryogenic temperatures, Int. J. Plast., 26(4) (2010) 488-506.
[28] H. Egner, B. Skoczeń, M. Ryś, Constitutive and numerical modeling of coupled dissipative phenomena in 316L stainless steel at cryogenic temperatures, Int. J. Plast., 64 (2015) 113-133.
[29] J. Tabin, B. Skoczen, J. Bielski, Discontinuous plastic flow coupled with strain induced fcc–bcc phase transformation at extremely low temperatures, Mech. Mater., 129 (2019) 23-40.
[30] B. Skoczeń, Functionally graded structural members obtained via the low temperature strain induced phase transformation, Int. J. Solids Struct., 44(16) (2007) 5182-5207.
[31] M. Sitko, B. Skoczeń, A. Wróblewski, FCC–BCC phase transformation in rectangular beams subjected to plastic straining at cryogenic temperatures, Int. J. Mech. Sci., 52(7) (2010) 993-1007.
[32] M. Sitko, B. Skoczeń, Effect of γ -α′ phase transformation on plastic adaptation to cyclic loads at cryogenic temperatures, Int. J. Solids Struct., 49(3-4) (2012) 613-634.
[33] R. Ortwein, B. Skoczeń, J.P. Tock, Micromechanics based constitutive modeling of martensitic transformation in metastable materials subjected to torsion at cryogenic temperatures, Int. J. Plast., 59 (2014) 152-179.
[34] M. Ryś, Modeling of damage evolution and martensitic transformation in austenitic steel at cryogenic temperature, Arch. Mech. Eng., 4 (2015) 523-537.
[35] R. Ortwein, M. Ryś, B. Skoczeń, Damage evolution in a stainless steel bar undergoing phase transformation under torsion at cryogenic temperatures, Int. J. Damage Mech., 25(7) (2016) 967-1016.
[36] H. Egner, M. Ryś, Total energy equivalence in constitutive modeling of multidissipative materials, Int. J. Damage Mech., 26(3) (2017) 417-446.
[37] S.S. Kazemi, M. Homayounfard, M. Ganjiani, N. Soltani, Numerical and experimental analysis of damage evolution and martensitic transformation in AISI 304 austenitic stainless steel at cryogenic temperature, Int. Appl. Mech., 11(02) (2019) 1950012.
[38] K. Nalepka, B. Skoczeń, M. Ciepielowska, R. Schmidt, J. Tabin, E. Schmidt, W. ZwolińskaFaryj, R. Chulist, Phase Transformation in 316L austenitic steel induced by fracture at cryogenic temperatures: experiment and modelling, Materials, 14(1) (2021) 127.
[39] F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, A new view on transformation induced plasticity (TRIP), Int. J. Plast., 16(7-8) (2000) 723-748.
[40] E.A. de Souza Neto, D. Peric, D.R. Owen, Computational methods for plasticity: theory and applications, John Wiley and Sons, (2008).
[41] J.W. Morris Jr, J.W. Chan, Z. Mei, The influence of deformation-induced martensite on the cryogenic behavior of 300-series stainless steels, Lawrence Berkeley Lab., CA (United States), (1992) LBL-32095.
[42] C. Garion, B. Skoczeń, S. Sgobba, Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures, Int. J. Plast., 22(7) (2006) 1234-1264.