On the Tool Stress Analysis in Twin Parallel Channel Angular Extrusion

Document Type : Original Research Paper


Department of Materials Science and Engineering, School of Engineering, Shiraz University, Iran.


Twin Parallel Channel Angular Extrusion (TPCAE) is a newly presented severe plastic deformation (SPD) technique in which two specimens can be processed simultaneously. This method is capable of processing more volumes of materials in addition to less energy consumption. In the present work, stress analysis of tools in this method was conducted using DEFORM 2D finite element software package. Moreover, in order to compare the results with the stress configuration in the conventional Equal Channel Angular Extrusion (ECAE) process in parallel channels, named Single Parallel Channel Angular Extrusion (SPCAE), stress analysis was also conducted with the same processing condition as TPCAE simulation. The results illustrate that TPCAE is a method with lower magnitudes of stress concentrations in the die and lower overall stress magnitudes in the punch with respect to the SPCAE. In addition, it was found that on the contrary to SPCAE, there is a symmetrical stress distribution in the punch and die in TPCAE, bringing about more lifetime for this method.


[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater Sci., 45(2) (2000) 103-189.
[2] S.H.C. Park, Y.S. Sato, H. Kokawa, Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D, J. Mater. Sci., 38(21) (2003) 4379-4383.
[3] P. Kumar, M. Kawasaki, T.G. Langdon, Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures, J. Mater. Sci., 51(1) (2016) 7-18.
[4] L.S. Toth, C. Gu, Ultrafine-grain metals by severe plastic deformation, Mater. Charact., 92 (2014) 1-14.
[5] E. Bagherpour, N. Pardis, M. Reihanian, R. Ebrahimi, An overview on severe plastic deformation: research status, techniques. classification, microstructure evolution, and applications, Int. J. Adv. Manuf. Technol., 100(5-8) (2019) 1647-1694.
[6] R.Z. Valiev, T.G. Langdon, Principles of equalchannel angular pressing as a processing tool for grain refinement, Prog. Mater Sci., 51(7) (2006) 881-981.
[7] E. Bagherpour, M. Reihanian, N. Pardis, R. Ebrahimi, T.G. Langdon, Ten years of severe plastic deformation (SPD) in Iran, part I: equal channel angular pressing (ECAP), Iran. J. Mater. Form., 5(1) (2018) 71-113.
[8] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci., 53(6) (2008) 893-979.
[9] Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, Useful properties of twist extrusion, Mater. Sci. Eng., A, 503(1-2) (2009) 14-17.
[10] F. Heydari, H. Saljoghi, S.H. Nourbakhsh, Numerical investigation of the cross-section and twist extrusion die angle on the distribution of plastic strain and microstructure of Al7050 Alloy, J. Stress Anal., 4(2) (2020) 1-8.
[11] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materialsdevelopment of the accumulative roll-bonding (ARB) process, Acta Mater., 47(2) (1999) 579-583.
[12] M. Reihanian, E. Bagherpour, N. Pardis, R. Ebrahimi, N. Tsuji, Ten years of severe plastic deformation (SPD) in Iran, part II: accumulative roll bonding (ARB), Iran. J. Mater. Form., 5(2) (2018) 1-25.
[13] N. Pardis, R. Ebrahimi, Deformation behavior in Simple Shear Extrusion (SSE) as a new severe plastic deformation technique, Mater. Sci. Eng., A, 527(1-2) (2009) 355-360.
[14] H. Mozafari, F. Akbaripanah, Changes in Grain Size, Texture, and Mechanical Properties of AZ31/(TiO2)p Nanocomposites Processed by Isothermal Multidirectional Forging, J. Stress Anal., 4(2) (2020) 45-53.
[15] Y. Nishida, H. Arima, J.C. Kim, T. Ando, Development of the ECAP with a rotary die and its application to AC4C aluminum alloy, Journal of Japan Institute of Light Metals, 50(12) (2000) 655-659.
[16] L. Zuyan, W. Zhongjin, Finite-element analysis of the load of equal-cross-section lateral extrusion, J. Mater. Process. Technol., 94(2-3) (1999) 193-196.
[17] G.I. Raab, Fizika i Tekhnika Vysokikh Davleniy, Physics and Engineering of High Pressures, 14(4) (2004) 83.
[18] G. Raab, Plastic flow at equal channel angular processing in parallel channels, Mater. Sci. Eng., A, 410-411 (2005) 230-233.
[19] M. Abdi, R. Ebrahimi, Twin parallel channel angular extrusion as a development of ECAE in parallel channels, SN Appl. Sci., 2 (2020) 548.
[20] M. Abdi, R. Ebrahimi, Friction Effect on the Required Load in Twin Parallel Channel Angular Extrusion The 9th International Conference on Materials Engineering and Metallurgy, Tehran, Iran. (2020).
[21] M. Abdi, R. Ebrahimi, XRD Analysis of Cell Size and Dislocation Density in Twin Parallel Channel Angular Extrusion, The 28th Annual International Conference of Iranian Society of Mechanical Engineers-ISME2020, Tehran, Iran, (2020).
[22] F.P. Beer, E.R. Johnston, J.T. DeWolf, Mechanics of Materials, 3rd edn, Columns. In: N.S. Prasad, S. Krishnamurthy (ed), Tata McGraw-Hill, New Delhi, (2004).