Investigation of the Effect of Die Parameters on the Mechanical Properties of Pure Copper in The Combined Process of Torsional Extrusion and ECAP

Document Type : Original Research Paper


1 Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran.

2 Faculty of Materials and Industrial Engineering, Babol Noshirvani University of Technology, Babol, Iran.

3 Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran.


The production of fine-grained materials by Severe Plastic Deformation (SPD) methods has made these methods more attractive. The basic condition for producing specimens with better mechanical properties and more homogeneous structure is the application of high and uniform plastic strain. Many researchers have tried to modify the existing SPDs or introduce new techniques to achieve these goals. In this research, in order to improve the mechanical properties of the specimens, a new method is introduced, which is the combination of the two processes of torsional extrusion and ECAP. Then, by performing the design of experiments, the optimal die geometric parameters, including the internal angle of the ECAP channel α, the outer angle of the ECAP channel , the length of the torsional region L, the ratio of large diameter to small diameter of the ellipse, m, and the torsional angle of the elliptical section, θ, were obtained 90.5◦, 39◦, 34mm, 1.65 and 120◦, respectively. 


[1] Y.T. Zhu, T.C. Lowe, T.G. Langdon, Performance and applications of nanostructured materials produced by severe plastic deformation, Scr. Mater., 51(8) (2004) 825-830.
[2] C.S. Pande, K.P. Cooper, Nanomechanics of Hall–Petch relationship in nanocrystalline materials, Prog. Mater. Sci., 54(6) (2009) 689-706.
[3] P. Mansoor, S.M. Dasharath , A review paper on magnesium alloy fabricated by severe plastic deformation technology and its effects over microstructural and mechanical properties, Mater. Today, 45
(2020) 356-364.
[4] R.Z. Valiev, T.G. Langdon, Principles of equalchannel angular pressing as a processing tool for grain refinement, Prog. Mater Sci., 51(7) (2006) 881-981.
[5] M. Jamalian, M. Hamid, N. De Vincentis, Q. Buck, D.P. Field, H.M. Zbib, Creation of heterogeneous microstructures in copper using high-pressure torsion to enhance mechanical properties, Mater. Sci. Eng. A, 756 (2019) 142-148.
[6] V.G. Arigela, N.R. Palukuri, D. Singh, S.K. Kolli, R. Jayaganthan, J. Rengaswamy, P. Chekhonin, J. Scharnweber, W. Skrotzki, Evolution of microstructure and mechanical properties in 2014 and 6063 similar and dissimilar aluminium alloy laminates produced by accumulative roll bonding, J. Alloys Compd., 790 (2019) 917-927.
[7] N. Mupe, H. Miyamoto, M. Yuasa, Improvement of the mechanical properties of Magnesium alloy ZA31 using Non-linear Twist Extrusion (NTE), Procedia Struct. Integrity, 21 (2019) 73-82.
[8] M. Moghaddam, A. Zarei-Hanzaki, M.H. Pishbin, A.H. Shafieizad, V.B. Oliveira, Characterization of the microstructure, texture and mechanical properties of 7075 aluminum alloy in early stage of severe plastic deformation, Mater. Charact., 119 (2016) 137-147.
[9] J. Li, F. Li, C. Zhao, H. Chen, X. Ma, J. Li, Experimental study on pure copper subjected to different severe plastic deformation modes, Mater. Sci. Eng. A, 656 (2016) 142-150.
[10] F. Djavanroodi, M. Ebrahimi, Effect of die parameters and material properties in ECAP with parallel channels, Mater. Sci. Eng. A, 527(29-30) (2010) 7593-7599.
[11] R. Kocisko, T. Kvackaj, A. Kovacova, The influence of ECAP geometry on the effective strain distribution, J. Achiev. Mater. Manuf. Eng., 62(1) (2014) 25-30.
[12] Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, Useful properties of twist extrusion, Mater. Sci. Eng. A, 503(1-2) (2009) 14-17.
[13] F. Heydari, H. Saljoghi, S.H. Nourbakhsh, Numerical investigation of the cross-section and twist extrusion die angle on the distribution of plastic strain and microstructure of Al7050 alloy, J. Stress Anal., 4(2) (2020) 1-8.
[14] C. Wang, F. Li, H. Lu., Z. Yuan, B. Chen, H. Qiao, Deformation analysis of elliptical cross-section spiral equal channel extrusion technique, Rare Met. Mater. Eng., 42(4) (2013) 679-683.
[15] C. Wang, F. Li, H. Lu, Z. Yuan, B. Chen, Optimization of structural parameters for elliptical cross-section spiral equal-channel extrusion dies based on grey theory, Chinese J. Aeronaut., 26(1) (2013) 209-216.
[16] U.M. Iqbal, S. Muralidharan, Optimization of die design parameters and experimental validation on twist channel angular pressing process of AA6061-T6 aluminium alloy, Mater. Res. Express, 6(8) (2019) 0865f2.
[17] M. Hosseinzadeh, M. Ghasempour Mouziraji, An analysis of tube drawing process used to produce squared section from round tubes through FE simulation and response surface methodology, Int. J. Adv. Manuf. Technol., 87(5) (2016) 2179-2194.
[18] F. Djavanroodi, M. Ebrahimi, B. Rajabifar, S. Akramizadeh, Fatigue design factors for ECAPed materials, Mater. Sci. Eng. A, 528(2) (2010) 745-750.
[19] C.F. Zhu, F.P. Du, Q.Y. Jiao, X.M. Wang, A.Y. Chen, F. Liu, D. Pan, Microstructure and strength of pure Cu with large grains processed by equal channel angular pressing, Mater. Des., 52 (2013) 23-29.