[1] Y.T. Zhu, T.C. Lowe, T.G. Langdon, Performance and applications of nanostructured materials produced by severe plastic deformation, Scr. Mater., 51(8) (2004) 825-830.
[2] C.S. Pande, K.P. Cooper, Nanomechanics of Hall–Petch relationship in nanocrystalline materials, Prog. Mater. Sci., 54(6) (2009) 689-706.
[3] P. Mansoor, S.M. Dasharath , A review paper on magnesium alloy fabricated by severe plastic deformation technology and its effects over microstructural and mechanical properties, Mater. Today, 45
(2020) 356-364.
[4] R.Z. Valiev, T.G. Langdon, Principles of equalchannel angular pressing as a processing tool for grain refinement, Prog. Mater Sci., 51(7) (2006) 881-981.
[5] M. Jamalian, M. Hamid, N. De Vincentis, Q. Buck, D.P. Field, H.M. Zbib, Creation of heterogeneous microstructures in copper using high-pressure torsion to enhance mechanical properties, Mater. Sci. Eng. A, 756 (2019) 142-148.
[6] V.G. Arigela, N.R. Palukuri, D. Singh, S.K. Kolli, R. Jayaganthan, J. Rengaswamy, P. Chekhonin, J. Scharnweber, W. Skrotzki, Evolution of microstructure and mechanical properties in 2014 and 6063 similar and dissimilar aluminium alloy laminates produced by accumulative roll bonding, J. Alloys Compd., 790 (2019) 917-927.
[7] N. Mupe, H. Miyamoto, M. Yuasa, Improvement of the mechanical properties of Magnesium alloy ZA31 using Non-linear Twist Extrusion (NTE), Procedia Struct. Integrity, 21 (2019) 73-82.
[8] M. Moghaddam, A. Zarei-Hanzaki, M.H. Pishbin, A.H. Shafieizad, V.B. Oliveira, Characterization of the microstructure, texture and mechanical properties of 7075 aluminum alloy in early stage of severe plastic deformation, Mater. Charact., 119 (2016) 137-147.
[9] J. Li, F. Li, C. Zhao, H. Chen, X. Ma, J. Li, Experimental study on pure copper subjected to different severe plastic deformation modes, Mater. Sci. Eng. A, 656 (2016) 142-150.
[10] F. Djavanroodi, M. Ebrahimi, Effect of die parameters and material properties in ECAP with parallel channels, Mater. Sci. Eng. A, 527(29-30) (2010) 7593-7599.
[11] R. Kocisko, T. Kvackaj, A. Kovacova, The influence of ECAP geometry on the effective strain distribution, J. Achiev. Mater. Manuf. Eng., 62(1) (2014) 25-30.
[12] Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, Useful properties of twist extrusion, Mater. Sci. Eng. A, 503(1-2) (2009) 14-17.
[13] F. Heydari, H. Saljoghi, S.H. Nourbakhsh, Numerical investigation of the cross-section and twist extrusion die angle on the distribution of plastic strain and microstructure of Al7050 alloy, J. Stress Anal., 4(2) (2020) 1-8.
[14] C. Wang, F. Li, H. Lu., Z. Yuan, B. Chen, H. Qiao, Deformation analysis of elliptical cross-section spiral equal channel extrusion technique, Rare Met. Mater. Eng., 42(4) (2013) 679-683.
[15] C. Wang, F. Li, H. Lu, Z. Yuan, B. Chen, Optimization of structural parameters for elliptical cross-section spiral equal-channel extrusion dies based on grey theory, Chinese J. Aeronaut., 26(1) (2013) 209-216.
[16] U.M. Iqbal, S. Muralidharan, Optimization of die design parameters and experimental validation on twist channel angular pressing process of AA6061-T6 aluminium alloy, Mater. Res. Express, 6(8) (2019) 0865f2.
[17] M. Hosseinzadeh, M. Ghasempour Mouziraji, An analysis of tube drawing process used to produce squared section from round tubes through FE simulation and response surface methodology, Int. J. Adv. Manuf. Technol., 87(5) (2016) 2179-2194.
[18] F. Djavanroodi, M. Ebrahimi, B. Rajabifar, S. Akramizadeh, Fatigue design factors for ECAPed materials, Mater. Sci. Eng. A, 528(2) (2010) 745-750.
[19] C.F. Zhu, F.P. Du, Q.Y. Jiao, X.M. Wang, A.Y. Chen, F. Liu, D. Pan, Microstructure and strength of pure Cu with large grains processed by equal channel angular pressing, Mater. Des., 52 (2013) 23-29.