[1] D. Francois, A. Pineau, From Charpy to Present Impact Testing, Elsevier Science, (2002).
[2] H. Khavanin, S.H. Hashemi, Comparison of fracture surface and charpy impact testing specimens in thermomechanical steel, Iranian Journal of Mechanical Engineers Association, 16(3) (2014) 67-78.
[3] S.H. Hashemi, Statistical analysis of charpy impact test data on grid steel pipes API X65, 4th Iranian Oil and Gas Transmission Conference, Iran, (2012).
[4] M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, Prentice Hall, New Jersey, (1999).
[5] S.A. Sajjadi, Mechanical Behavior of Materials, Ferdowsi University of Mashhad, (2005).
[6] W.D. Pilkey, D.F. Pilkey, Peterson’s Stress Concentration Factors, Third edition, John Wiley and Sons, (2007).
[7] M. Kunigita, S. Aihara, T. Kawabata, T. Kasuya, Y. Okazaki, M. Inomoto, Prediction of Charpy impact toughness of steel weld heat affected zones by combined micromechanics and stochastic fracture model, Part I: Model presentation, Eng. Fract. Mech., 230 (2020) 106965.
[8] S.G. Druce, G. Gage, E. Popkiss, Effects of notch geometry on the impact fracture behaviour of a cast duplex stainless steel, J. Pres. Ves. Piping, 33 (1988) 59-81.
[9] F.J. Gomez, M. Elices, J. Planas, The cohesive crack concept: application to PMMA at -60◦, Eng. Fract. Mech., 72(8) (2005) 1268-1285.
[10] R.R. Ambriz, D. Jaramillo, C. Garcia, F.F. Curiel, Fracture energy evaluation on 7075-T651 aluminum alloy welds determined by instrumented impact pendulum, Trans. Nonferrous Met. Soc. China, 26(4) (2016) 974-983.
[11] M. Cova, M. Nanni, R. Tovo, Geometrical size effect in high cycle fatigue strength of heavywalled ductile cast iron GJS400: Weakest link vs defectbased approach, Procedia Eng., 74 (2014) 101-104.
[12] A. Hosseinzadeh, S.H. Hashemi, Experimental investigation of notch depth effect on Charpy fracture energy in API X65 steel, ISME2018, (2018).
[13] A. Hosseinzadeh, M.R. Maraki, A. Emamverdi, M. Sadidi, Experimental investigation of notch depth effect on Charpy fracture energy in aluminum 7075, ISME2019, (2019).
[14] A. Emamverdi, M.R. Maraki, M. Sadidi, A. Hosseinzadeh, Experimental investigation of notch tip radius effect on Charpy fracture energy in aluminum 7075, ISME2019, (2019).
[15] M.R. Maraki, M. Sadidi, A. Emamverdi, A. Hosseinzadeh, Experimental investigation of notch Angle effect on Charpy fracture energy in aluminum 7075, ISME2019, (2019).
[16] C.E. Prema, S. Suresh, G. Ramanan, M. Sivaraj, Characterization corrosion and failure strength analysis of Al7075 influenced with B4C and NanoAl2O3 composite using online acoustic emission, Mater. Res. Express, 7(1) (2020) 016524.
[17] A. Hosseinzadeh, M.R. Maraki, M. Sadidi, Investigation of the effect of notch tip radius on fracture energy of Charpy in 7075 Aluminium alloy, J. Adv. Manuf. Technol., 13(2) (2020) 65-72.
[18] S. Yousefzadeh, M. Kashfi, P. Kahhal, A. Ansariasl, An experimental investigation on tensile and impact properties of bagasse/polypropylene natural composite, AUT J. Mech. Eng., 52(8) (2020) 2149-2160.
[19] A. Hosseinzadeh, K. Farhangdoost, M.R. Maraki, Effect of V -notch depth on fracture toughness and the plastic region of the crack tip using Charpy impact test data in API X65 steel, J. Appl. Comput. Mech., 31(2) (2021) 19-32.
[20] A. Hosseinzadeh, M.R. Maraki, M. Sadidi, A. Hassani, Experimental and fractography investigation of notch depth effect by instrumented impact pendulum in 7075 Aluminum alloy, J. Solid Fluid Mech., (2021), DOI: 10.22044/jsfm.2021.9582.3172.
[21] A. Hosseinzadeh, S.H. Hashemi, Experimental investigation of notch depth effect on Charpy fracture energy in API X65 steel, ISME2018, Semnan, Iran, (2018).
[22] ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials (Approved Nov. 10. 2002, Published May 2003).
[23] C. He, Y. Liu, J. Dong, Q. Wang, D. Wagner, C. Bathias, Fatigue crack initiation behaviors throughout friction stir welded joints in AA7075-T6 in ultrasonic fatigue, Int. J. Fatigue, 81 (2015) 171-178.
[24] A. Shterenlikht, S.H. Hashemi, J.R. Yates, I.C. Howard, R.M. Andrews, Assessment of an instrumented Charpy impact machine, Int. J. Fract., 132 (2005) 81-97.
[25] M.B. Ali, S. Abdullah, M.Z. Nuawi, A.Z. Ariffin, Investigation of energy absorbed from an instrumented Charpy impact on automotive specimens, Appl. Mech. Mater., 165 (2012) 182-186.
[26] T. Kobayashi, M. Otani, S. Morita, H. Toda, Effect of striker shape and attached position of strain gage on measured load in instrumented Charpy impact test, Proc. 4th 9nt. Sump. Impact Eng. Kumamoto, Japan, Elsevier, 86(9) (2000) 595-601.
[27] N. Vlajic, A. Chijioke, E. Lucon, Design considerations to improve Charpy instrumented strikers, Journal of Research (NIST JRES), National Institute of Standards and Technology, Gaithersburg, MD, (2020), DOI:10.6028/jres.125.010.
[28] W.D. Pilkey, D.F. Pilkey, Z. Bi, Peterson’s Stress Concentration Factors, 4th Edition, John Wiley and Sons, Inc., (2020).
[29] S. Filippi, P. Lazzarin, R. Tovo, Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates, Int. J. Solids Struct., 39(17) (2002) 4543-4565.
[30] P. Lazzarin, S. Filippi, A generalized stress intensity factor to be applied to rounded V-shaped notches, Int. J. Solids Struct., 43(9) (2006) 2461-2478.
[31] M.R. Ayatollahi, A.R. Torabi, Investigation of mixed mode brittle fracture in rounded-tip V-notched components, Eng. Fract. Mech., 77(16) (2010) 3087-3104.
[32] R. Gross, A. Mendelson, Plane elastostatic analysis of V-notched plates, Int. J. Fract. Mech., 8 (1972) 267-276.
[33] X. Li, Y. Song, Z. Ding, S. Bao, Z. Gao, A modified correlation between KJIC and Charpy V-notch impact energy of Chinese SA508-III steel at the upper shelf, J. Nucl. Mater., 505 (2018) 22-29.
[34] H. Salavati, Y. Alizadeh, F. Berto, Effect of notch depth and radius on the critical fracture load of bainitic functionally graded steels under mixed mode I plus II loading, Phys. Mesomech., 17 (2014) 178-189.