Investigation of the Notch Angle Effect on Charpy Fracture Energy in 7075-T651 Aluminum Alloy

Document Type : Original Research Paper


1 Material Engineering Department, Birjand University of Technology, Birjand, Iran.

2 Mechanical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.

3 Mechanical Engineering Department, Faculty of Engineering, Quchan University of Technology, Quchan, Iran.

4 Civil Engineering Department, Shahrood University of Technology, Shahrood, Iran.


In the present study, the Charpy impact test was performed on 7075-T651 Aluminum alloy specimens with different notch angles for fracture energy measurement. In this regard, specimens with seven different notch angles were prepared, and then fracture energy was measured using the Charpy impact test. By considering the experimental results a quadratic relationship between the fracture energy (CVN in J) and the notch angle of the Charpy specimens was achieved for the tested Aluminum alloy, so the fracture energy of the 7075-T651 AA specimens was calculated for each desired notch angle. The experimental data validation was performed using mathematical modeling. Furthermore, the fracture surface of the specimens was investigated at different notch angles using SEM. By increasing the notch angle to the standard specimen, the fracture surface becomes smoother and tends to feature a brittle fracture as well as the shear lip is reduced. Moreover, for the specimens with higher notch angle (from the standard), the fracture surface tends to feature a ductile fracture and the shear lip increases. 


[1] D. Francois, A. Pineau, From Charpy to Present Impact Testing, Elsevier Science, (2002).
[2] H. Khavanin, S.H. Hashemi, Comparison of fracture surface and charpy impact testing specimens in thermomechanical steel, Iranian Journal of Mechanical Engineers Association, 16(3) (2014) 67-78.
[3] S.H. Hashemi, Statistical analysis of charpy impact test data on grid steel pipes API X65, 4th Iranian Oil and Gas Transmission Conference, Iran, (2012).
[4] M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, Prentice Hall, New Jersey, (1999).
[5] S.A. Sajjadi, Mechanical Behavior of Materials, Ferdowsi University of Mashhad, (2005).
[6] W.D. Pilkey, D.F. Pilkey, Peterson’s Stress Concentration Factors, Third edition, John Wiley and Sons, (2007).
[7] M. Kunigita, S. Aihara, T. Kawabata, T. Kasuya, Y. Okazaki, M. Inomoto, Prediction of Charpy impact toughness of steel weld heat affected zones by combined micromechanics and stochastic fracture model, Part I: Model presentation, Eng. Fract. Mech., 230 (2020) 106965.
[8] S.G. Druce, G. Gage, E. Popkiss, Effects of notch geometry on the impact fracture behaviour of a cast duplex stainless steel, J. Pres. Ves. Piping, 33 (1988) 59-81.
[9] F.J. Gomez, M. Elices, J. Planas, The cohesive crack concept: application to PMMA at -60, Eng. Fract. Mech., 72(8) (2005) 1268-1285.
[10] R.R. Ambriz, D. Jaramillo, C. Garcia, F.F. Curiel, Fracture energy evaluation on 7075-T651 aluminum alloy welds determined by instrumented impact pendulum, Trans. Nonferrous Met. Soc. China, 26(4) (2016) 974-983.
[11] M. Cova, M. Nanni, R. Tovo, Geometrical size effect in high cycle fatigue strength of heavywalled ductile cast iron GJS400: Weakest link vs defectbased approach, Procedia Eng., 74 (2014) 101-104.
[12] A. Hosseinzadeh, S.H. Hashemi, Experimental investigation of notch depth effect on Charpy fracture energy in API X65 steel, ISME2018, (2018).
[13] A. Hosseinzadeh, M.R. Maraki, A. Emamverdi, M. Sadidi, Experimental investigation of notch depth effect on Charpy fracture energy in aluminum 7075, ISME2019, (2019).
[14] A. Emamverdi, M.R. Maraki, M. Sadidi, A. Hosseinzadeh, Experimental investigation of notch tip radius effect on Charpy fracture energy in aluminum 7075, ISME2019, (2019).
[15] M.R. Maraki, M. Sadidi, A. Emamverdi, A. Hosseinzadeh, Experimental investigation of notch Angle effect on Charpy fracture energy in aluminum 7075, ISME2019, (2019).
[16] C.E. Prema, S. Suresh, G. Ramanan, M. Sivaraj, Characterization corrosion and failure strength analysis of Al7075 influenced with B4C and NanoAl2O3 composite using online acoustic emission, Mater. Res. Express, 7(1) (2020) 016524.
[17] A. Hosseinzadeh, M.R. Maraki, M. Sadidi, Investigation of the effect of notch tip radius on fracture energy of Charpy in 7075 Aluminium alloy, J. Adv. Manuf. Technol., 13(2) (2020) 65-72.
[18] S. Yousefzadeh, M. Kashfi, P. Kahhal, A. Ansariasl, An experimental investigation on tensile and impact properties of bagasse/polypropylene natural composite, AUT J. Mech. Eng., 52(8) (2020) 2149-2160.
[19] A. Hosseinzadeh, K. Farhangdoost, M.R. Maraki, Effect of V -notch depth on fracture toughness and the plastic region of the crack tip using Charpy impact test data in API X65 steel, J. Appl. Comput. Mech., 31(2) (2021) 19-32.
[20] A. Hosseinzadeh, M.R. Maraki, M. Sadidi, A. Hassani, Experimental and fractography investigation of notch depth effect by instrumented impact pendulum in 7075 Aluminum alloy, J. Solid Fluid Mech., (2021), DOI: 10.22044/jsfm.2021.9582.3172.
[21] A. Hosseinzadeh, S.H. Hashemi, Experimental investigation of notch depth effect on Charpy fracture energy in API X65 steel, ISME2018, Semnan, Iran, (2018).
[22] ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials (Approved Nov. 10. 2002, Published May 2003).
[23] C. He, Y. Liu, J. Dong, Q. Wang, D. Wagner, C. Bathias, Fatigue crack initiation behaviors throughout friction stir welded joints in AA7075-T6 in ultrasonic fatigue, Int. J. Fatigue, 81 (2015) 171-178.
[24] A. Shterenlikht, S.H. Hashemi, J.R. Yates, I.C. Howard, R.M. Andrews, Assessment of an instrumented Charpy impact machine, Int. J. Fract., 132 (2005) 81-97.
[25] M.B. Ali, S. Abdullah, M.Z. Nuawi, A.Z. Ariffin, Investigation of energy absorbed from an instrumented Charpy impact on automotive specimens, Appl. Mech. Mater., 165 (2012) 182-186.
[26] T. Kobayashi, M. Otani, S. Morita, H. Toda, Effect of striker shape and attached position of strain gage on measured load in instrumented Charpy impact test, Proc. 4th 9nt. Sump. Impact Eng. Kumamoto, Japan, Elsevier, 86(9) (2000) 595-601.
[27] N. Vlajic, A. Chijioke, E. Lucon, Design considerations to improve Charpy instrumented strikers, Journal of Research (NIST JRES), National Institute of Standards and Technology, Gaithersburg, MD, (2020), DOI:10.6028/jres.125.010.
[28] W.D. Pilkey, D.F. Pilkey, Z. Bi, Peterson’s Stress Concentration Factors, 4th Edition, John Wiley and Sons, Inc., (2020).
[29] S. Filippi, P. Lazzarin, R. Tovo, Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates, Int. J. Solids Struct., 39(17) (2002) 4543-4565.
[30] P. Lazzarin, S. Filippi, A generalized stress intensity factor to be applied to rounded V-shaped notches, Int. J. Solids Struct., 43(9) (2006) 2461-2478.
[31] M.R. Ayatollahi, A.R. Torabi, Investigation of mixed mode brittle fracture in rounded-tip V-notched components, Eng. Fract. Mech., 77(16) (2010) 3087-3104.
[32] R. Gross, A. Mendelson, Plane elastostatic analysis of V-notched plates, Int. J. Fract. Mech., 8 (1972) 267-276.
[33] X. Li, Y. Song, Z. Ding, S. Bao, Z. Gao, A modified correlation between KJIC and Charpy V-notch impact energy of Chinese SA508-III steel at the upper shelf, J. Nucl. Mater., 505 (2018) 22-29.
[34] H. Salavati, Y. Alizadeh, F. Berto, Effect of notch depth and radius on the critical fracture load of bainitic functionally graded steels under mixed mode I plus II loading, Phys. Mesomech., 17 (2014) 178-189.