[1] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, Asymmetric single point incremental forming of sheet metal, CIRP Ann. Manuf. Technol., 54(2) (2005) 88-114.
[2] W.C. Emmens, G. Sebastiani, A.H. van den Boogaard, The technology of incremental sheet forming-a brief review of the history, J. Mater. Process. Technol., 210(8) (2010) 981-997.
[3] T. McAnulty, J. Jeswiet, M. Doolan, Formability in single point incremental forming: A comparative analysis of the state of the art, CIRP J. Manuf. Sci. Technol., 16 (2017) 43-54.
[4] J.R. Duflou, A.M. Habraken, J. Cao, R. Malhotra, M.Bambach, D. Adams, H. Vanhove, A. Mohammadi, J. Jeswiet, Single point incremental forming: state-of-the-art and prospects, Int. J. Mater. Form., 11(6) (2018) 743-773.
[5] Y.M. Huang, K.H. Chien, The formability limitation of the hole-flanging process, J. Mater. Process. Technol., 117(1-2) (2001) 43-51.
[6] G. Centeno, M.B. Silva, V.A.M. Cristino, C. Vallellano, P.A.F. Martins, Hole-flanging by incremental sheet forming, Int. J. Mach. Tools Manuf., 59 (2012) 46-54.
[7] L. Montanari, V.A. Cristino, M.B. Silva, P.A.F. Martins, A new approach for deformation history of material elements in hole-flanging produced by single point incremental forming, Int. J. Adv. Manuf. Technol., 69(5-8) (2013) 1175-1183.
[8] M.B. Silva, P. Teixeira, A. Reis, P.A.F. Martins, On the formability of hole-flanging by incremental sheet forming, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 227(2) (2013) 91-99.
[9] M. Borrego, D. Morales-Palma, A.J. MartínezDonaire, G. Centeno, C. Vallellano, Experimental study of hole-flanging by single-stage incremental sheet forming, J. Mater. Process. Technol., 237 (2016) 320-330.
[10] T. Cao, B. Lu, H. Ou, H. Long, J. Chen, Investigation on a new hole-flanging approach by incremental sheet forming through a featured tool, Int. J. Mach. Tools Manuf., 110 (2016) 1-17.
[11] V.A. Cristino, L. Montanari, M.B. Silva, A.G. Atkins, P.A.F. Martins, Fracture in hole-flanging produced by single point incremental forming, Int. J. Mech. Sci., 83 (2014) 146-154.
[12] A.J. Martínez-Donaire, M. Borrego, D. MoralesPalma, G. Centeno, C. Vallellano, Analysis of the influence of stress triaxiality on formability of holeflanging by single-stage SPIF, Int. J. Mech. Sci., 151 (2019) 76-84.
[13] P.K. Gandla, S. Kurra, K.S. Prasad, S.K. Panda, S.K. Singh, Effect of pre-cut hole diameter on deformation mechanics in multi-stage incremental hole flanging of deep drawing quality steel, Arch. Civ. Mech. Eng., 21(1) (2021) 16.
[14] M.J. Mirnia, M. Shamsari, Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion, J. Mater. Process. Technol., 244 (2017) 17-43.
[15] L. Xue, Ductile fracture modeling: theory, experimental investigation and numerical verification, Ph.D. Thesis, Massachusetts Institute of Technology. Department of Mechanical Engineering, Cambridge, USA, (2007).
[16] Y. Bai, Effect of loading history on necking and fracture, Ph.D. Thesis, Massachusetts Institute of Technology. Department of Mechanical Engineering, Cambridge, USA, (2008).
[17] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, Int. J. Fract., 161(1) (2010) 1-20.
[18] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci., 46(1) (2004) 81-98.
[19] T. Wierzbicki, Y. Bao, Y.W. Lee, Y. Bai, Calibration and evaluation of seven fracture models, Int. J. Mech. Sci., 47(4-5) (2005) 719-743.
[20] T. Coppola, L. Cortese, P. Folgarait, The effect of stress invariants on ductile fracture limit in steels, Eng. Fract. Mech., 76(9) (2009) 1288-1302.
[21] I. Barsoum, J. Faleskog, Rupture mechanisms in combined tension and shear-Experiments, Int. J. Solids Struct., 44(6) (2007) 1768-1786.
[22] K.S. Zhang, J.B. Bai, D. Francois, Numerical analysis of the influence of the Lode parameter on void growth, Int. J. Solids Struct., 38(32-33) (2001) 5847-5856.
[23] W.C. Emmens, A.H. van den Boogaard, An overview of stabilizing deformation mechanisms in incremental sheet forming, J. Mater. Process. Technol., 209(8) (2009) 3688-3695.
[24] F. Maqbool, M. Bambach, Dominant deformation mechanisms in single point incremental forming (SPIF) and their effect on geometrical accuracy, Int. J. Mech. Sci., 136 (2018) 279-292.
[25] M.J. Mirnia, M. Vahdani, Calibration of ductile fracture criterion from shear to equibiaxial tension using hydraulic bulge test, J. Mater. Process. Technol., 280 (2020) 116589.
[26] H. Talebi-Ghadikolaee, H.Moslemi Naeini, M.J. Mirnia, M.A. Mirzai, S. Alexandrov, H. Gorji, Experimental and numerical investigation of failure during bending of AA6061 aluminum alloy sheet using the modified Mohr-Coulomb fracture criterion, Int. J. Adv. Manuf. Tech., 105(12) (2019) 5217-5237.
[27] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. Math. Phys. Eng. Sci., 193(1033) (1948) 281-297.
[28] S. Bagherzadeh, M.J. Mirnia, B. Mollaei Dariani, Numerical and experimental investigations of hydro-mechanical deep drawing process of laminated aluminum/steel sheets, J. Manuf. Process., 18 (2015) 131-140.
[29] D. Morales-Palma, C. Vallellano, F.J. GarcíaLomas, Assessment of the effect of the throughthickness strain/stress gradient on the formability of stretch-bend metal sheets, Mater. Des., 50 (2013) 798-809.
[30] D.Y. Seong, M.Z. Haque, J.B. Kim, T.B. Stoughton, J.W. Yoon, Suppression of necking in incremental sheet forming, Int. J. Solid Struct., 51(15-16) (2014) 2840-2849.
[31] F. Zhalehfar, S.J. Hosseinipour, S. Nourouzi, A.H. Gorji, A different approach for considering the effect of non-proportional loading path on the forming limit diagram of AA5083, Mater. Des., 50 (2013) 165-173.
[32] K.A. Al-Ghamdi, G. Hussain, Threshold toolradius condition maximizing the formability in SPIF considering a variety of materials: experimental and FE investigations, Int. J. Mach. Tools Manuf., 88 (2015) 82-94.