Effect of Thermophoresis and Brownian Motion on Natural Convection of Yield Stress Nanofluids

Document Type : Original Research Paper

Authors

1 Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran.

2 Arts et Métiers ParisTech, 2 Boulevard du Ronceray, BP 93525, F-49035 Angers cedex 01, France.

Abstract

This paper analyzes the effects of yield stress and nanoparticles transport on the natural convection of viscoplastic Casson nanofluids. The non-linear coupled partial differential equations are solved numerically using Buongiorno’s mathematical model. The governing parameters for the problem are the Rayleigh number (Ra), yield number (Y), and thermophoresis and Brownianmotion parameters (N t&Nb). The effects of these parameters on the fluid flow, heat and mass transfer, and the shape of yielded and unyielded regions are examined and discussed in detail. The results demonstrate that the heat and mass transfer rates increase as the Rayleigh number increases, while the opposite behaviors are observed with increasing the yield number. The fluid is difficultly yielded at low Rayleigh number. The heat and mass transfer are primarily due to conduction at the high values of the yield number. The main effect of thermophoresis and Brownian motion parameters is on temperature and concentration distribution in the cavity. These parameters also show significant impacts on critical heat and mass transfer.

Keywords


[1] S. Ostrach, Natural Convection in Enclosures. ASME. J. Heat Transfer., 110(4b) (1988) 1175-1190.
[2] M. Corcione, Rayleigh-Bénard convection heat transfer in nanoparticle suspensions, Int. J. Heat Fluid Flow., 32(1) (2011) 65-77.
[3] S. Aghighi, A. Ammar, C. Metivier, F. Chinesta, Parametric solution of the Rayleigh-Benard convection model by using the PGD, Int. J. Numer. Methods Heat Fluid Flow, 25(6) (2015) 1252-1281.
[4] H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow., 29(5) (2008) 1326-1336.
[5] O. Abouali, G. Ahmadi, Computer simulations of natural convection of single phase nanofluids in simple enclosures: A critical review, Appl. Therm. Eng., 36 (2012) 1-13.
[6] F. Garoosi, S. Garoosi, K. Hooman, Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model, Powder Technol., 268 (2014) 279-292.
[7] G.C. Bourantas, V.C. Loukopoulos, Modeling the natural convective flow of micropolar nanofluids, Int. J. Heat Mass Transf., 68 (2014) 35-41.
[8] G.H.R. Kefayati, Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity, Powder Technol., 299 (2016) 127-149.
[9] A.I. Alsabery, A.J. Chamkha, H. Saleh, I. Hashim, Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls, Powder Technol., 308 (2017) 214-234.
[10] S.A.M. Mehryan, M. Ghalambaz, A.J. Chamkha, M. Izadi, Numerical study on natural convection of Ag-MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model, Powder Technol., 367 (2020) 443-455.
[11] N. Casson, Rheology of Disperse Systems, Pergamon Press, Oxford, (1959).
[12] R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications, Butterworth-Heinemann/Elsevier, (2008).
[13] O. Turan, N. Chakraborty, R.J. Poole, Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls, J. Nonnewton, Fluid Mech., 165(15-16) (2010) 901-913.
[14] O. Turan, N. Chakraborty, R.J. Poole, Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure, J. Nonnewton. Fluid Mech., 171-172 (2012) 83-96.
[15] M.S. Aghighi, A. Ammar, Aspect ratio effects in Rayleigh-Bénard convection of Herschel-Bulkley fluids, Eng. Comput., 34(5) (2017) 1658-1676.
[16] M. Sairamu, N. Nirmalkar, R.P. Chhabra, Natural convection from a circular cylinder in confined Bingham plastic fluids, Int. J. Heat Mass Transf., 60 (2013) 567-581.
[17] H. Masoumi, M.S. Aghighi, A. Ammar, A. Nourbakhsh, Laminar natural convection of yield stress fluids in annular spaces between concentric cylinders, Int. J. Heat Mass Transf., 138 (2019) 1188-1198.
[18] B. Rafiei, H. Masoumi, M.S. Aghighi, A. Ammar, Effects of complex boundary conditions on natural convection of a viscoplastic fluid, Int. J. Numer. Methods Heat Fluid Flow, 29(8) (2019) 2792-2808.
[19] M.S. Aghighi, A. Ammar, H. Masoumi, A. Lanjabi, Rayleigh-Bénard convection of a viscoplastic liquid in a trapezoidal enclosure, Int. J. Mech. Sci., 180 (2020) 105630.
[20] S. Nadeem, R. Mehmood, N.S. Akbar, Optimized analytical solution for oblique flow of a Cassonnano fluid with convective boundary conditions, Int. J. Therm. Sci., 78 (2014) 90-100.
[21] T. Hayat, S.A. Shehzad, A. Alsaedi, M.S. Alhothuali, Mixed convection stagnation point flow of Casson fluid with convective boundary conditions, Chinese Phys. Lett., 29(11) (2012) 114704.
[22] T. Hayat, M. Farooq, A. Alsaedi, Thermally stratified stagnation point flow of Casson fluid with slip conditions, Int. J. Numer. Methods Heat Fluid Flow, 25(4) (2015) 724-748.
[23] W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition, J. Aerosp. Eng., 29(2) (2016) 04015037.
[24] Z. Mehmood, R. Mehmood, Z. Iqbal, numerical investigation of micropolar Casson fluid over a stretching sheet with internal heating, Commun. Theor. Phys., 67(4) (2017) 443-448.
[25] G. Makanda, S. Shaw, P. Sibanda, Effects of radiation on MHD free convection of a Casson fluid from a horizontal circular cylinder with partial slip in non-Darcy porous medium with viscous dissipation, Bound. Value Probl., 2015 (2015) 75.
[26] C.S.K. Raju, N. Sandeep, V. Sugunamma, M. Jayachandra Babu, J.V. Ramana Reddy, Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface, Eng. Sci. Technol. Int. J., 19(1) (2016) 45-52.
[27] B. Mahanthesh, T. Brizlyn, S.A. Shehzad, G. B.J., Nonlinear thermo-solutal convective flow of Casson fluid over an oscillating plate due to noncoaxial rotation with quadratic density fluctuation: Exact solutions, Multidiscip. Model. Mater. Struct., 15(4) (2019) 818-842.
[28] I. Pop, M. Sheremet, Free convection in a square cavity filled with a Casson fluid under the effects of thermal radiation and viscous dissipation, Int. J. Numer. Methods Heat Fluid Flow, 27(10) (2017) 2318-2332.
[29] M.S. Aghighi, A. Ammar, C. Metivier, M. Gharagozlu, Rayleigh-Bénard convection of Casson fluids, Int. J. Therm. Sci., 127 (2018) 79-90.
[30] M.S. Aghighi, C. Metivier, H. Masoumi, Natural convection of Casson fluid in a square enclosure, Multidiscip. Model. Mater. Struct., 16(5) (2020) 1245-1259.
[31] J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer, 128(3) (2006) 240-250.
[32] T.C. Papanastasiou, Flows of materials with yield, J. Rheol., 31(5) (1987) 385-404.
[33] G. Dhatt, G. Touzot, E. Lefrançois, Finite Element Method, ISTE Ltd and John Wiley
& Sons, Inc. London, (2012).
[34] M.A. Sheremet, T. Groşan, I. Pop, Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model, Eur. J. Mech. B/Fluids, 53 (2015) 241-250.