[1] H.T. Son, T.S. Kim, C. Suryanarayana, B.S. Chun, Homogeneous dispersion of graphite in a 6061 aluminum alloy by ball milling, Mater. Sci. Eng. A, 348(1-2) (2003) 163-169.
[2] Y. Kawamura, H. Mano, A. Inoue, Nanocrystalline aluminum bulk alloys with a high strength of 1420MPa produced by the consolidation of amorphous powders, Scr. Mater., 44 (8-9) (2001) 1599-1604.
[3] H. Lianxi, L. Zuyan, W. Erde, Microstructure and mechanical properties of 2024 aluminum alloy consolidated from rapidly solidified alloy powders, Mater. Sci. Eng. A, 323 (1-2) (2002) 213-217.
[4] H. So, W.C. Li, H.K. Hsieh, Assessment of the powder extrusion of silicon- aluminium alloy, J. Mater. Process. Technol., 114(1) (2001) 18-21.
[5] D.W. Heard, I.W. Donaldson, D.P. Bishop, Metallurgical assessment of a hypereutectic aluminum–silicon P/M alloy, J. Mater. Process. Technol., 209(18-19) (2009) 5902-5911.
[6] T. Hasegaw, T. Yasuno, T. Nagai, T. Takahashi, Origin of superplastic elongation in aluminum alloys produced by mechanical milling, Acta Mater., 46(17) (1998) 6001-6007.
[7] R.S. Ruof, D.C. Lorents, Mechanical and thermalproperties of carbon nanotubes, Carbon, 33(7) (1995) 925-930.
[8] S. Iijima, Helical Microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
[9] S. Iijima, T. Ichihasi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363 (1993) 603-605.
[10] V.N. Popov, Carbon nanotubes: Properties and applications, Mater. Sci. Eng. R, 43 (2004) 61-102.
[11] M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett., 84(24) (2000) 5552-5555.
[12] G. Overney, W. Zhong, D. Dománek, Structural rigidity and low frequency vibrational modes of long carbon tubules, Z. Phys. D Atom. MOL. CL., 27 (1993) 93-96.
[13] S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nano-composites processed by molecular-level mixing, Adv. Mater., 17(11) (2005) 1377-1381.
[14] R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in aluminium/CNT composites, Scr. Mater., 53(10) (2005) 1159-1163.
[15] C. Deng, X.X. Zhang, D. Wang, Q. Lin, A. Li, Preparation and characterization of carbon nanotubes / aluminium matrix composites, Mater. Lett., 61(8-9) (2007) 1725-1728.
[16] C.F. Deng, X.X. Zhang, D.Z. Wang, Y.X. Ma, Calorimetric study of carbon nanotubes and aluminum, Mater. Lett., 61(14-15) (2007) 3221-3223.
[17] C.F. Deng, Y.X. Ma, P. Zhang, X.X. Zhang, D.Z. Wang, Thermal expansion behaviors of aluminium composites reinforced with carbon nanotubes, Mater. Lett., 62(15) (2008) 2301-2303.
[18] U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir, A. Tacca, F. Maglia, G. Spinolo, Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I, densification studies, J. Mater. Res., 19(11) (2004) 3255-3262.
[19] A. Khalil, Synthesis and Wear Behaviour of Aluminium 6061 Alloy Reinforced with CNT. Master Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, (2012).
[20] A.H. Javadi, Sh. Mirdamadi, M.A. Faghihisani, S. Shakhesi, R. Soltani, Fabrication of well-dispersed, multiwalled carbon nanotubes reinforced aluminum matrix composites, New Carbon Mater., 27(3) (2012) 161-165.
[21] L. Wang, H. Choi, J.M. Myoung, W. Lee, Mechanical alloying of multi- walled carbon nanotubes and aluminum powders for the preparation of carbon/metal composites, Carbon, 47(15) (2009) 3427-3433.
[22] ASTM C1161, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, (1996).
[23] ASTM E92, Standard Test Method for Vickers Hardness of Metallic Materials, (1997).
[24] F. Barati, M. Latifi, E. Moayerifar, M.H. Mosallanejad, A. Saboori, Novel AM60-SiO2 nanocomposite produced via ultrasound-assisted casting; production and characterization, Materials, 12(23) (2019) 3976.
[25] F. Fereshteh-Saniee, F. Barati, H. Badnava, Kh. Fallah Nejad, An exponential material model for prediction of the flow curves of several AZ series magnesium alloys in tension and compression, Mater. Des., 35 (2012) 1-11.
[26] Z. Hosseini Tabar, F. Barati, Effect of SiC particles on fatigue life of al-matrix composites, J. Stress Anal., 4(1) (2019) 73-88.
[27] M.M. Amiri, F. Fereshteh-Saniee, An Experimental investigation on the effect of cooling rate during combined continuous casting and rolling process on mechanical properties of 7075 aluminum alloy, Trans. Indian Inst. Met., 73 (2020) 441-448.
[28] D. Zhou, T. Li, S. Xu, J. Liu, Microstructure and mechanical properties of adding adhesive-layer laser-welded joints of DP590 dual-phas steel and 6061 aluminum alloy, Trans. Indian Inst. Met., 72 (2019) 3295-3304.
[29] H. Li, M. Ramezani, Z. Chen, S. Singamneni, Effects of process parameters on temperature and stress distributions during selective laser melting of Ti-6Al-4V, Trans. Indian Inst. Met.,72 (2019) 3201-3214.
[30] M. Arefi, E. Mohammad-Rezaei Bidgoli, R. Dimitri, F. Tornaben, Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets, Aerosp. Sci. Technol., 81 (2019) 108-117.
[31] M. Arefi, E. Mohammad-Rezaei Bidgoli, R. Dimitri, M. Bacciocchi, F. Tornabene, Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets, Aerosp. Sci. Technol., 166 (2019) 1-12.
[32] M. Arefi, E. Mohammad-Rezaei Bidgoli, R. Dimitri, F. Tornabene, J.N. Reddy, Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on pasternak foundations, Appl. Sci., 9(8) (2019) 1580.
[33] M. Mohammadi, M. Arefi, R. Dimitri, F. Tornabene, Higher-order thermo-elastic analysis of FGCNTRC cylindrical vessels surrounded by a pasternak foundation, Nanomaterials, 9(1) (2019) 79.
[34] M. Arefi, S. Kiani Moghaddam, E. MohammadRezaei Bidgoli, M. Kiani, O. Civalek, Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads, Composite Structures, 255 (2021) 112924.
[35] E. Mohammad-Rezaei Bidgoli, M. Arefi, Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation, J. Sandw. Struct. Mater., 23 (2) (2021) 436-472.