Mechanical Integrity Reduction in the Polymeric-pulsatile-pressurized Vessel under Strain-induced Degradation Model

Document Type : Original Research Paper


Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran.


This paper studies the mechanical behavior of a polymeric degradable vessel subjected to internal pulsatile pressure, external pressure, and axial elongation. Two deformation-induced evolution laws are selected to investigate time-position-dependent material properties of the polymeric vessel. The vessel is subjected to the neo-Hookean constitutive model and an axisymmetric condition. To simulate finite deformation in the degradable vessel, FlexPDE commercial software is invoked in which the governing equations are solved by Standard Galerkin Finite Element Method (SGFEM). Results show that stresses pulsationally increase during degradation. Deformation response of the degradable vessel against time reveals the creep-like behavior of degradable polymers. Degradation rate begins from an initial peak value and decreases over time. The impact of degradation on invariants of the deformation tensor versus time and the vessel radius is discussed. Degradation evolution is higher in the outer radius of the vessel because of higher deformation in this region. 


[1] R. Dwivedi, S. Kumar, R. Pandey, A. Mahajan, D. Nandana, D.S. Katti, D. Mehrotra, Polycaprolactone as biomaterial for bone scaffolds: Review of literature, J. Oral Biol. Craniofac. Res., 10(1) (2020) 381-388.
[2] H. Lim, S. Ha, M. Bae, S.H. Yoon, A highly robust approach to fabricate the mass-customizable mold of sharp-tipped biodegradable polymer microneedles for drug delivery, Int. J. Pharm., 600 (2021) 120475.
[3] F. Trentadue, D. De Tommasi, G. Puglisi, A predictive micromechanically-based model for damage and permanent deformations in copolymer sutures, J. Mech. Behav. Biomed. Mater., 115 (2021) 104277.
[4] F.P. La Mantia, M. Morreale, L. Botta, M.C. Mistretta, M. Ceraulo, R. Scaffaro, Degradation of polymer blends: A brief review, Polym. Degrad. Stab., 145 (2017) 79-92.
[5] F. von Burkersroda, L. Schedl, A. Göpferich, Why degradable polymers undergo surface erosion or bulk erosion, Biomaterials , 23(21) (2002) 4221-4231.
[6] R. Scaffaro, A. Maio, F. Sutera, E.F. Gulino, M. Morreale, Degradation and recycling of films based on biodegradable polymers: A short review, Polymers, 11(4) (2019) 651.
[7] A.N. Ford Versypt, D.W. Pack, R.D. Braatz, Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres - A review, J. Control. Release, 165(1) (2013) 29-37.
[8] E.L. Boland, C.J. Shine, N. Kelly, C.A. Sweeney, P.E. McHugh, A review of material degradation modelling for the analysis and design of bioabsorbable stents, Ann. Biomed. Eng., 44(2) (2016) 341-356.
[9] T. Pilgrim, M. Rothenbühler, G. CM Siontis, D.E. Kandzari, J.F. Iglesias, M. Asami, T. Lefèvre, R. Piccolo, J. Koolen, S. Saito, T. Slagboom, O. Muller, R. Waksman, S. Windecker, Biodegradable polymer sirolimus-eluting stents vs durable polymer everolimus-eluting stents in patients undergoing percutaneous coronary intervention: A metaanalysis of individual patient data from 5 randomized trials, Am. Heart J., 235 (2021) 140-148.
[10] Y. Zhang, X. Liu, L. Zeng, J. Zhang, J. Zuo, J. Zou, J. Ding, X. Chen, Polymer fiber scaffolds for bone and cartilage tissue engineering, Adv. Funct. Mater., 29(36) (2019) 1903279.
[11] L. Gritsch, E. Perrin, J.M. Chenal, Y. Fredholm, A. LB Maçon, J. Chevalier, A. R Boccaccini, Combining bioresorbable polyesters and bioactive glasses: Orthopedic applications of composite implants and bone tissue engineering scaffolds, Appl. Mater. Today, 22 (2021) 100923.
[12] G.A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering. 1th ed. New York: Wiley Editorial Offices, (2000).
[13] S. Prabhu, S. Hossainy, Modeling of degradation and drug release from a biodegradable stent coating, J. Biomed. Mater. Res. A, 80(3) (2007) 732-741.
[14] T. Shazly, V.B. Kolachalama, J. Ferdous, J.P. Oberhauser, S. Hossainy, E.R. Edelman, Assessment of material by-product fate from bioresorbable vascular scaffolds, Ann. Biomed. Eng., 40(4) (2012) 955-965.
[15] Q. Luo, X. Liu, Z. Li, C. Huang, W. Zhang, J. Meng, Z. Chang, Z. Hua, Degradation model of bioabsorbable cardiovascular stents, PLOS ONE, 9(11) (2014) e110278.
[16] K.R. Rajagopal, A.R. Srinivasa, A.S. Wineman, On the shear and bending of a degrading polymer beam, Int. J. Plast., 23(9) (2007) 1618-1636.
[17] J.S. Soares, J.E. Moore Jr., K.R. Rajagopal, Constitutive framework for biodegradable polymers with applications to biodegradable stents, ASAIO J., 54(3) (2008) 295-301.
[18] K.A. Khan, T. El-Sayed, A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers, Acta Mech., 224(2) (2012) 287-305.
[19] R.M. Berne, M.N. Levy, Cardiovascular Physiology. Mosby. St. Louis, (1967) p. 201.
[20] D.L. Brown, Cardiovascular Plaque Rupture. 1th ed. New York: CRC Press, (2002).
[21] J.C. Wang, S.L.T. Normand, L. Mauri, R.E. Kuntz, Coronary artery spatial distribution of acute myocardial infarction occlusions, ACC Current Journal Review, 110(3) (2004) 278-284.
[22] M. Kazemian, H. Afrasiab, M.H. Pashaei, Comparison of the plaque rupture risk in different double-stenosis arrangements of coronary arteries by modeling fluid-structure interaction, Modares Mechanical Engineering, 16(2) (2016) 10-18 (In Persian).
[23] R. Beaumont, K. Bhaganagar, B. Segee, O. Badak, Using fuzzy logic for morphological classification of IVUS-based plaques in diseased coronary artery in the context of flow-dynamics, Soft Comput., 14 (2010) 265-272.
[24] K. Bhaganagar, C. Veeramachaneni, C. Moreno, Significance of plaque morphology in modifying flow characteristics in a diseased coronary artery: Numerical simulation using plaque measurements from intravascular ultrasound imaging, Appl. Math. Model., 37(7) (2013) 5381-5393.
[25] A. Karimi, M. Navidbakhsh, A. Shojaei, S. Faghihi, Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries, Mater. Sci. Eng. C, 33(5) (2013) 2550-2554.
[26] C.M. Agrawal, K.F. Haas, D.A. Leopold, H.G. Clark, Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents, Biomaterials, 13(3) (1992) 176-182.
[27] A.C. Akyildiz, L. Speelman, H. van Brummelen, M.A. Gutiérrez, R. Virmani, A. van der Lugt, A.F.W. van der Steen, J.J. Wentzel, F.J.H. Gijsen, Effects of intima stiffness and plaque morphology on peak cap stress, Biomed. Eng. Online, 10 (2011) 25.
[28] J.R. Doherty, D.M. Dumont, G.E. Trahey, M.L. Palmeri, Acoustic radiation force impulse imaging of vulnerable plaques: A finite element method parametric analysis, J. Mech. Eng., 46(1) (2013) 83-90.
[29] M. Kazemian, H. Afrasiab, M.H. Pashaei, R.A. Jafari-Talookolaei, A numerical study based on finite element method on the effect of geometrical parameters of the coronary artery aneurysm on the mechanical stress created on the aneurysm wall, J. Mech. Eng., 50(1) (2020) 181-187.
[30] ANSYS, Inc., ‘ANSYS Help - Release 19’, 2018.
[31] M. Kazemian, A. Moazemi Goudarzi, A. Hassani, A study on an incompressible polymeric pressurized vessel subjected to bulk degradation, Math. Mech. Solids., (2021), DOI: 10.1177/10812865211033634.
[32] FlexPDE 7, PDE Solution Inc., (2017).
[33] S.M. Ebrahimi, M. Javanmard, M.H. Taheri, M. Barimani, Heat transfer of fourth-grade fluid flow in the plane duct under an externally applied magnetic field with convection on walls, Int. J. Mech. Sci., 128-129 (2017) 564-571.
[34] M. Kazemian, A. Moazemi Goudarzi, A. Hassani, A Study on Deformation-Induced Degradation of the Compressible Polymeric Pressurized Vessel through a Non-Equilibrium Thermodynamic Framework, Math. Mech. Solids., (2021),
DOI: 10.1177/10812865211042924.
[35] J.S. Soares, K.R. Rajagopal, J.E. Moore Jr., Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus, Biomech. Model. Mechanobiol., 9 (2010) 177-186.
[36] M. Kazemian, A. Hassani, A.M. Goudarzi, On strain-induced degradation of the polymeric skeleton in poro-hyperelastic inflating vessels by a non-equilibrium thermodynamic framework, Int. J. Eng. Sci., 171 (2022) 103618.