[1] R. Marcombe, S. Cai, W. Hong, X. Zhao, Y. Lapusta, Z. Suo, A theory of constrained swelling of a pH-sensitive hydrogel, Soft Matter, 6(4) (2010) 784-793.
[2] W. Otto, L. Drahoslav, Cross-linked hydrophilic polymers and articles made therefrom, (1965), Google Patents.
[3] H. Mazaheri, A. Ghasemkhani, S. Sabbaghi, Study of fluid–structure interaction in a functionally graded pH-sensitive hydrogel micro-valve, Int. J. Appl. Mech., 12(05) (2020) 2050057.
[4] T. Morimoto, F. Ashida, Temperature-responsive bending of a bilayer gel, Int. J. Solids Struct., 56 (2015) 20-28.
[5] F. Lai, H. Li, R. Luo, Chemo-electro-mechanical modeling of ionic-strength-sensitive hydrogel: Influence of Young’s modulus, Int. J. Solids Struct., 47(22-23) (2010) 3141-3149.
[6] X. Zhou, Y.C. Hon, S. Sun, A.F.T. Mak, Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field, Smart Mater. Struct., 11(3) (2002) 459-467.
[7] A. Kargar-Estahbanaty, M. Baghani, H. Shahsavari, Gh. Faraji, A combined analytical-numerical investigation on photosensitive hydrogel microvalves, Int. J. Appl. Mech., 9(07) (2017) 1750103.
[8] M. Doi, Gel dynamics, J. Phys. Soc. Jpn., 78(5) (2009) 052001.
[9] H. Mazaheri, A.H. Namdar, A. Ghasemkhani, A model for inhomogeneous large deformation of photo-thermal sensitive hydrogels, Acta Mech., 232 (2021) 2955-2972.
[10] T.Y. Liu, S.H. Hu, T.Y. Liu, D.M. Liu, S.Y. Chen, Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir, 22(14) (2006) 5974-5978.
[11] P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery, Drug Discov. Today, 7(10) (2002) 569-579.
[12] H. Mazaheri, A. Khodabandehloo, FSI and non-FSI studies on a functionally graded temperature-responsive hydrogel bilayer in a micro-channel, Smart Mater. Struct., 31(1) (2022) 015007.
[13] H. Mazaheri, A.H. Namdar, A. Amiri, Behavior of a smart one-way micro-valve considering fluid–structure interaction, J. Intell. Mater. Syst. Struct., 29(20) (2018) 3960-3971.
[14] S.K. De, N.R. Aluru, B. Johnson, W.C. Crone, D.J. Beebe, J. Moore, Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and simulations, J. Microelectromechanical Syst., 11(5) (2002) 544-555.
[15] A. Drozdov, Swelling of pH-responsive cationic gels: Constitutive modeling and structure–property relations, Int. J. Solids Struct., 64 (2015) 176-190.
[16] H. Yan, B. Jin, S. Gao, L. Chen, Equilibrium swelling and electrochemistry of polyampholytic pH-sensitive hydrogel, Int. J. Solids Struct., 51(23-24) (2014) 4149-4156.
[17] N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, M. Mosavi-Mashhadi, Study on pH-sensitive hydrogel micro-valves: A fluid-structure interaction approach, J. Intell. Mater. Syst. Struct, 28(12) (2017) 1589-1602.
[18] S. Cai, Z. Suo, Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels, J. Mech. Phys. Solids, 59(11) (2011) 2259-2278.
[19] S.A. Chester, L. Anand, A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels, J. Mech. Phys. Solids, 59(10) (2011) 1978-2006.
[20] H. Mazaheri, M. Baghani, R. Naghdabadi, S. Sohrabpour, Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in microvalves: Analytical and numerical study, Smart Mater. Struct., 24(4) (2015) 045004.
[21] R. Xiao, J. Qian, S. Qu, Modeling gel swelling in binary solvents: a thermodynamic approach to explaining cosolvency and cononsolvency effects, Int. J. Appl. Mech., 11(5) (2019) 1950050.
[22] S. Zheng, Z. Li, Z. Liu, The fast homogeneous diffusion of hydrogel under different stimuli, Int. J. Mech. Sci., 137 (2018) 263-270.
[23] Z. Liu, W. Toh, T.Y. Ng, Advances in mechanics of soft materials: A review of large deformation behavior of hydrogels, Int. J. Appl. Mech., 7(05) (2015) 1530001.
[24] W. Hong, X. Zhao, Z. Suo, Large deformation and electrochemistry of polyelectrolyte gels. J. Mech. Phys. Solids, 58(4) (2010) 558-577.
[25] A. Drozdov, J.D. Christiansen, The effects of pH and Ionic strength of swelling of cationic gels, Int. J. Appl. Mech., 8(5) (2016) 1650059.
[26] D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, 404(6778) (2000) 588-590.
[27] H. Mazaheri, M. Baghani, R. Naghdabadi, S. Sohrabpour, Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling, Smart Mater. Struct., 25(8) (2016) 085034.
[28] M. Guvendiren, J.A. Burdick, S. Yang, Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise cross-linking gradient, Soft Matter, 6(9) (2010) 2044-2049.
[29] M. Guvendiren, S. Yang, J.A. Burdick, Swelling‐induced surface patterns in hydrogels with gradient cross-linking density, Adv. Funct. Mater., 19(19) (2009) 3038-3045.
[30] M. Shojaeifard, F. Rouhani, M. Baghani, A combined analytical–numerical analysis on multidirectional finite bending of functionally graded temperature-sensitive hydrogels, J. Intell. Mater. Syst. Struct., 30(13) (2019) 1882-1895.
[31] H. Mazaheri, A. Ghasemkhani, Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell, J. Stress Anal., 3(2) (2019) 29-35.
[32] H. Mazaheri, A. Ghasemkhani, A.H. Namdar, Behavior of photo-thermal sensitive polyelectrolyte hydrogel micro-valve: Analytical and numerical approaches, J. Stress Anal., 5(1) (2020) 21-30.
[33] Z. Wu, N. Bouklas, R. Huang, Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction, Int. J. Solids Struct., 50(3-4) (2013) 578-587.
[34] A.H. Namdar, Kinetics of swelling of cylindrical functionally graded temperature-responsive hydrogels, J. Comput. Appl. Mech., 51(2) (2020) 464-471.