Sensitivity Analysis for Stress, Heat-Treating, and Rare-Earth Elements on Fatigue Lifetime of AZ91 Magnesium Alloy

Document Type : Original Research Paper

Authors

1 Faculty of Aerospace Engineering, Semnan University, Semnan, Iran.

2 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

3 Department of Mechanical Engineering, University of Bristol, Bristol, United Kingdom.

10.22084/jrstan.2022.25222.1199

Abstract

 In this article, the changes in High-Cycle Fatigue (HCF) lifetimes of the AZ91 magnesium alloy are investigated under the influences of the different heat treatments and also the Rare-Earth (RE) element addition. For this purpose, some different heat treatments, including a common solution treatment, with different ageing treatments and RE elements were performed. Then, the sensitivity analysis was done using the regression analysis by the DESIGN EXPERT software on the experimental data. At a similar fatigue lifetime, the RE element increased the strength or the stress level by at least 30%, and also, the RE element with heat-treating enhanced the material strength by at least 50%. The results of sensitivity analysis on the experimental data illustrated that the stress level, the heat treatment, and the RE element (RE) were the most effective parameters on the fatigue lifetime, respectively. Besides, the fatigue lifetime was sensitive to the interaction of the heat treatment and the RE element. In addition, the fracture surface analysis demonstrated that all
samples had three different zones for the crack initiation, the crack growth, and the sudden final fracture.
 

Keywords


[1] Z. Trojanová, P. Palček, M. Chalupová, P. Lukáč, I. Hlaváčová, High-frequency cycling behavior of three AZ magnesium alloys-microstructural characterization, Int. J. Mater. Res., 107(10) (2016) 903-914.
[2] L. Zhang, Q. Wang, W. Liao, W. Guo, B. Ye, H. Jiang, W. Ding, Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy, J. Mater. Sci. Technol., 33(9) (2017) 935-940.
[3] P.H. Manrique, J.D. Robson, M.T. Pérez-Prado, Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rareearth elements: A quantitative study, Acta Mater., 124 (2017) 456-467.
[4] Y. Wang, G. Liu, Z. Fan, A new heat treatment procedure for rheo-diecast AZ91D magnesium alloy, Scr. Mater., 54(5) (2006) 903-908.
[5] H.Y. Wu, C.C. Hsu, J.B. Won, P.H. Sun, J.Y. Wang, S. Lee, C.H. Chiu, S. Torng, Effect of heat treatment on the microstructure and mechanical properties of the consolidated Mg alloy AZ91D machined chips, J. Mater. Process. Technol., 209(8) (2009) 4194-4200.
[6] A.M. Majd, M. Farzinfar, M. Pashakhanlou, M.J. Nayyeri, Effect of RE elements on the microstructural and mechanical properties of as-cast and age hardening processed Mg-4Al-2Sn alloy, J. Magnesium Alloys, 6(3) (2018) 309-317.
[7] J.K. Kim, S.H. Oh, K.C. Kim, W.T. Kim, D.H. Kim, Effect of ageing time and temperature on the ageing behavior in Sn containing AZ91 alloy, Met. Mater. Int., 23(2) (2017) 308-312.
[8] Z. Li, A.A. Luo, Q. Wang, H. Zou, J. Dai, L. Peng, Fatigue characteristics of sand-cast AZ91D magnesium alloy, J. Magnesium Alloys, 5(1) (2017) 1-12.
[9] S. Khisheh, K. Khalili, M. Azadi, V. Zaker Hendoabadi, Heat treatment effect on microstructure, mechanical properties and fracture behavior of cylinder head aluminum-silicon-copper alloy, J. Engine Res., 50 (2018) 55-65.
[10] P. Zhang, Z. Li, H. Yue, Strain-controlled cyclic deformation behavior of cast Mg-2.99Nd-0.18Zn-0.38Zr and AZ91D magnesium alloys, J. Mater. Sci., 51 (2016) 5469-5486.
[11] M. Kuffova, Fatigue Endurance of Magnesium Alloys, A Chapter Book in Magnesium Alloys - Design, Processing and Properties, Edited by F. Czerwinski, IntechOpen Publication, (2011).
[12] M. Azadi, M. Azadi, A. Hajiali Mohammadi, Effects of ageing and forging on short-term creep behaviors of Inconel-713C superalloy at 850
C, Int. J. Eng., 33(4) (2020) 639-646.
[13] P. Cavaliere, P.P. De Marco, Fatigue behavior of friction stir processed AZ91 magnesium alloy produced by high pressure die casting, Mater. Charact., 58(3) (2007) 226-232.
[14] M. Krupi´nski, T. Ta´nski, Prediction of mechanical properties of cast Mg-Al-Zn alloys, Arch. Mater. Sci. Eng., 56(1) (2012) 30-36.
[15] A. Bag, W. Zhou, Tensile and fatigue behavior of AZ91D magnesium alloy, J. Mater. Sci., 20 (2001) 457-459.
[16] M. Pokorny, C. Monroe, C. Beckermann, L. Bichler, C. Ravindran, Prediction of hot tear formation in a magnesium alloy Permanent mold casting, Int. J. Metalcast., 2(4) (2008) 41-53.
[17] A.R. Vaidya, J.J. Lewandowski, Effects of SiCp size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy composites, Mater. Sci. Eng., A, 220(1-2) (1996) 85-92.
[18] X.L. Xu, K. Zhang, X.G. Li, J. Lei, Y.S. Yang, T.J. Luo, High cycle fatigue properties of die-cast magnesium alloy AZ91D-1%MM, TTrans. Nonferrous Met. Soc. China, 18(1) (2008) s306-s311.
[19] Y. Yang, Y. Liu, S. Qin, Y. Fang, High cycle fatigue properties of die-cast magnesium alloy AZ9lD with addition of different concentrations of cerium, J. Rare Earths, 24(5) (2006) 591-595.
[20] Y. Yang, X. Li, Influence of neodymium on high cycle fatigue behavior of die-cast AZ91D magnesium alloy, J. Rare Earths, 28 (3) (2010) 456-460.
[21] M. Mokhtarishirazabad, S.M.A. Boutorabi, M. Azadi, M. Nikravan, Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy, Mater. Sci. Eng., A, 587 (2013) 179-184.
[22] C. Vanaret, P. Seufert, J. Schwientek, G. Karpov, G. Ryzhakov, I. Oseledets, N. Asprion, M. Bortz, Two-phase approaches to the optimal model-based design of experiments: how many experiments and which ones?, Comput. Chem. Eng., 146 (2021) 107218.
[23] K. Kumari, S. Yadav, Linear regression analysis study, J. Pract. Cardiovasc. Sci., 4(1) (2018) 33-36.
[24] B. Wolf, C. Fleck, D. Eifler, Characterization of the fatigue behavior of the magnesium alloy AZ91D by means of mechanical hysteresis and temperature measurements, Int. J. Fatigue, 26 (2004) 1357-1363.
[25] D.K. Xu, E.H. Han, Effect of yttrium content on the ultra-high cycle fatigue behavior of Mg-Zn-YZr alloys, Mater. Sci. Forum, 816 (2015) 333-336.
[26] D.G.L. Prakash, D. Regener, W.J.J. Vorster, Effect of long-term annealing on the microstructure of HPDC AZ91 Mg alloy: A quantitative analysis by image processing, Comput. Mater. Sci, 43(4) (2008) 759-766.
[27] C. Suman, Heat treatment of magnesium die casting alloys AZ91D and AM60B, SAE Tech. Pap., (1989) 890207.
[28] Z.M. Li, Q.G. Wang, A.A. Luo, L.M. Peng, P.H. Fu, Y.X. Wang, Improved high cycle fatigue properties of a new magnesium alloy, Mater. Sci. Eng., A, 582 (2013) 170-177.
[29] Y. Yang, H. Wu, Z.F. Xuan, Effect of solid solution treatment on fatigue behavior of cast magnesium alloy, Appl. Mech. Mater., 281 (2013) 436-440.
[30] A. Němcová, J. Zapletal, T. Podrábský, Fatigue behavior of AZ91 magnesium alloy, Mech. Ser., 55(3) (2009) 141-147.
[31] M. Mokhtarishirazabad, M. Azadi, G.H. Farrahi, G. Winter, W. Eichlseder, Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment, Mater. Sci. Eng., A, 588 (2013) 357-365.
[32] A.M. Afsari Golshan, H. Aroo, M. Azadi, Sensitivity analysis for effects of heat treatment, stress, and temperature on AlSi12CuNiMg aluminum alloy behavior under force-controlled creep loading, Appl. Phys. A, 127(1) (2021) 48.
[33] M. Azadi, H. Aroo, Bending cyclic behavior and scatter-band analysis of aluminum alloys under beneficial and detrimental conditions through high cycle fatigue regime, Frat. ed Integrita Strutt., 15(58) (2021) 272-281.
[34] H. Aroo, M.S. Aghareb Parast, M. Azadi, M. Azadi, Investigation of effects of nano-particles, heat treatment process and acid amount on corrosion rate in piston aluminum alloy using regression analysis, 11
th International Conference on Internal Combustion Engines and Oil (SAPCO), Tehran, Iran, (2020).
[35] M. Azadi, M. Zomorodipour, A. Fereidoon, Sensitivity analysis of mechanical properties and ductile/brittle behaviors in aluminum-silicon alloy to loading rate and nano-particles, considering interaction effects, Eng. Rep., 3(6) (2021) e12341.
[36] M. Azadi, A. Naderi, A. Freidoon, Investigation of effects of the temperature and adding nano-SiO
2-particles on high-temperature mechanical properties for the piston aluminum-silicon alloy, Iran. J. of Manuf. Eng., 8(3) (2021) 47-58 (In Persian).
[37] S. Safarloo, F. Loghman, M. Azadi, M. Azadi, Optimal design experiment of ageing time and temperature in Inconel-713C superalloy based on hardness objective, Trans. Indian Inst. Met., 71(3) (2018) 1563-1572.
[38] S. Ishihara, S. Yoshifuji, T. Namito, T. Goshima, On the distributions of fatigue lives and defectsizes in the die-cast magnesium alloy AZ91, Procedia Eng., 2(1) (2010) 1253-1262.
[39] H. Mayer, M. Papakyriacou, B. Zettl, S.E. StanzlTschegg, Influence of porosity on the fatigue limit of die-cast magnesium and aluminum alloys, Int. J. Fatigue, 25 (2003) 245-256.
[40] N. Fisch, E. Camp, K. Shertzer, R. Ahrens, Assessing likelihoods for fitting composition data within stock assessments, with emphasis on different degrees of process and observation error, Fish. Res., 243 (2021) 106069.
[41] K. Rahmani, G.H. Majzoobi, H. Bakhtiari, A. Sadooghi, On the effect of compaction velocity, size, and content of reinforcing particles on corrosion resistance of Mg-B
4C composites, Mater. Chem. Phys., 271 (2021) 124946.
[42] K. Rahmani, G.H. Majzoobi, G. Ebrahim-Zadeh, M. Kashfi, Comprehensive study on quasi-static and dynamic mechanical properties and wear behavior of Mg-B
4C composite compacted at several loading rates through powder metallurgy, Trans. Nonferrous Met. Soc. China, 31(2) (2021) 371-381.
[43] K. Rahmani, A. Nouri, G. Wheatley, H. Malekmohammadi, H. Bakhtiari, V. Yazdi, Determination of tensile behavior of hot-pressed Mg-TiO
2 and Mg-ZrO2 nanocomposites using indentation test and a holistic inverse modeling technique, J. Mater. Res. Technol., 14 (2021) 2107-2114.