[1] N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Adv. Mater., 18(11) (2006) 1345-1360.
[2] G. Chan, D.J. Mooney, New materials for tissue engineering: towards greater control over the biological response, Trends Biotechnol., 26(7) (2008) 382-392.
[3] L. Dong, A.K. Agarwal, D.J. Beebe, H. Jiang, Adaptive liquid microlenses activated by stimuliresponsive hydrogels, Nature, 442(7102) (2006) 551-554.
[4] C. Yang, W. Wang, C. Yao, R. Xie, X.J. Ju, Z. Liu, L.Y. Chu, Hydrogel walkers with electrodriven motility for Cargo transport, Sci Rep, 5 (2015) 13622.
[5] A. Ghasemkhani, H. Mazaheri, A. Amiri, Fluid-structure interaction simulations for a temperature-sensitive functionally graded hydrogel-based micro-channel, J. Intell. Mater. Syst. Struct., 32(6) (2020) 661-677.
[6] H. Mazaheri, A. Khodabandehloo, FSI and nonFSI studies on a functionally graded temperatureresponsive hydrogel bilayer in a micro-channel, Smart Mater. Struct., 31(1) (2022) 015007.
[7] H. Mazaheri, A. Ghasemkhani, S. Sabbaghi, Study of fluid–structure interaction in a functionally graded pH-sensitive hydrogel micro-valve, Int. J. Appl. Mech., 12(05) (2020) 2050057.
[8] H. Mazaheri, K. Soleymani, A. Ghasemkhani, An analytical solution and FEM simulation for the behavior of sensitive FG micro-valve in response to pH stimuli, J. Stress Anal., 6(1) (2021) 157-166.
[9] H. Mazaheri, A. Khodabandehloo, Behavior of an FG temperature-responsive hydrogel bilayer: Analytical and numerical approaches, Compos. Struct., 301 (2022) 116203.
[10] H. Mazaheri, A. Ghasemkhani, Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell, J. Stress Anal., 3(2) (2019) 29-35.
[11] D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, 404(6778) (2000) 588-590.
[12] Y. Lou, S. Chester, Kinetics of swellable packers under downhole conditions, Int. J. Appl. Mech., 06(06) (2014) 1450073.
[13] D. Kim, D.J. Beebe, A bi-polymer micro one-way valve, Sens. Actuators, A, 136(1) (2007) 426-433.
[14] H. Mazaheri, A.H. Namdar, A. Amiri, Behavior of a smart one-way micro-valve considering fluid–structure interaction, J. Intell. Mater. Syst. Struct., 29(20) (2018) 3960-3971.
[15] Q. Liu, Z. Wang, Y. Lou, Z. Suo, Elastic leak of a seal, Extreme Mech. Lett., 1 (2014) 54-61.
[16] B. Lorenz, B.N.J. Persson, Leak rate of seals: Comparison of theory with experiment, Europhys. Lett., 86(4) (2009) 44006.
[17] B. Druecke, E.B. Dussan V., N. Wicks, A.E. Hosoi, Large elastic deformation as a mechanism for soft seal leakage, J. Appl. Phys., 117(10) (2015) 104511.
[18] T.T. Hailey Jr, Freyer, Well tools with actuators utilizing swellable materials, Google Patents, US8453746B2, (2013).
[19] E.R. Abi Aad, Swellable packer, Google Patents, 9441449 (2016).
[20] J. Kluge, B. Jansen, A. Lutz, D.K. De, W.S. Butterfield, P. Williamson, Downwell system with activatable swellable packer, Google Patents, 20090205841 (2009).
[21] E.J. Gustafson, W.S. Butterfield, P. Williamson, Downwell system with differentially swellable packer, Google Patents, 20090205817 (2009).
[22] Z. Wang, C. Chen, Q. Liu, Y. Lou, Z. Suo, Extrusion, slide, and rupture of an elastomeric seal, J. Mech. Phys. Solids, 99 (2017) 289-303.
[23] Q. Liu, A. Robisson, Y. Lou, Z. Suo, Kinetics of swelling under constraint, J. Appl. Phys., 114(6) (2013) 064901.
[24] A.H. Namdar, H. Mazaheri, Kinetics of swelling of cylindrical temperature-responsive hydrogel: a semi-analytical study, Int. J. App. Mech., 12(08) (2020) 2050090.
[25] A.H. Namdar, Kinetics of swelling of cylindrical functionally graded temperature-responsive hydrogels, J. Comput. Appl. Mech., 51(2) (2020) 464-471.
[26] H. Mazaheri, A. Ghasemkhani, A. Namdar, Behavior of photo-thermal sensitive polyelectrolyte hydrogel micro-valve: analytical and numerical approaches, J. Stress Anal., 5(1) (2020) 21-30.
[27] Y. Lou, A. Robisson, S. Cai, Z. Suo, Swellable elastomers under constraint, J. Appl. Phys., 112(3) (2012) 034906.
[28] S.A. Chester, L. Anand, A coupled theory of fluid permeation and large deformations for elastomeric materials, J. Mech. Phys. Solids, 58(11) (2010) 1879-1906.
[29] W. Hong, X. Zhao, J. Zhou, Z. Suo, A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids, 56(5) (2008) 1779-1793.
[30] F.P. Duda, A.C. Souza, E. Fried, A theory for species migration in a finitely strained solid with application to polymer network swelling, J. Mech. Phys. Solids, 58(4) (2010) 515-529.
[31] H. Mazaheri, A.H. Namdar, A. Ghasemkhani, A model for inhomogeneous large deformation of photo-thermal sensitive hydrogels, Acta Mech., 232 (2021) 2955-2972.
[32] P.J. Flory, J. Rehner Jr., Statistical mechanics of cross-linked polymer networks II. swelling, J. Chem. Phys., 11(11) (1943) 521-526.
[33] P.J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys., 10(1) (1942) 51-61.
[34] M.L. Huggins, Some properties of solutions of long-chain compounds, J. Phys. Chem., 46(1) (1942) 151-158.
[35] M.L. Huggins, Solutions of long chain compounds, J. Chem. Phys., 9(5) (1941) 440.
[36] W. Hong, Z. Liu, Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, Int. J. Solids Struct., 46(17) (2009) 3282-3289.
[37] A. Karaszkiewicz, Geometry and contact pressure of an O-ring mounted in a seal groove, Ind. Eng. Chem. Chem. Res., 29(10) (1990) 2134-2137.