[1] S. Spuzic, K.N. Strafford, C. Subramaniana, G. Savageb, Wear of hot rolling mill rolls: an overview, Wear, 176(2) (1994) 261-271.
[2] P.G. Stevens, K.P. Ivens, P. Harper, Increasing work-roll life by improved roll cooling practice, J. Iron and Steel Inst., 209(1) (1971) 1-11.
[3] H. Mahdavi, K. Poulios, C.F. Niordson, Effect of superimposed compressive stresses on rolling contact fatigue initiation at hard and soft inclusions, Int. J. Fatigue, 134 (2020) 105399.
[4] F.J. Belzunce, A. Ziadi, C. Rodriguez, Structural integrity of hot strip mill rolling rolls, Eng. Fail. Anal., 11(1) (2004) 789-797.
[5] F. Weidlich, A.P.V. Braga, L.G.D.B. da Silva Lima, M.B. J´unior, R.M. Souza, The influence of rolling mill process parameters on roll thermal fatigue, Int. J. Adv. Manuf. Technol., 102 (2019) 2159-2171.
[6] A.P. Voskamp, E.J. Mittemeijer, The effect of the changing microstructure on the fatigue behavior during cyclic rolling contact loading, Int. J. Mater. Res., 88(4) (1997) 310-320.
[7] N.G. Popinceanu, E. Diaconescu, S. Cretu, Critical stresses in rolling contact fatigue, Wear, 71(3) (1981) 265-282.
[8] A. Warhadpande, F. Sadeghi, R.D. Evans, M.N. Kotzalas, Influence of plasticity-induced residual stresses on rolling contact fatigue, Tribol. Trans., 55(4) (2012) 422-37.
[9] E.V. Zaretsky, R.J. Parker, W.J. Anderson, A study of residual stress induced during rolling, J. Lubr. Technol., 91(2) (1969) 314-318.
[10] K. Hu, F. Zhu, J. Chen, N.-A., Noda, W. Han, Y. Sano, Simulation of thermal stress and fatigue life prediction of high speed steel work roll during hot rolling considering the initial residual stress, Metals, 9(9) (2019) 966.
[11] K. Hu, Q. Shi, W. Han, F. Zhu, J. Chen, On the evolution of temperature and combined stress in a work roll under cyclic thermo-mechanical loadings during hot strip rolling and idling, Materials, 13(21) (2020) 5054.
[12] Sp.S. Cretu, N.G. Popinceanu, The influence of residual-stresses induced by plastic deformation on rolling-contact fatigue, Wear, 105 (1985) 153-170.
[13] H. Mahdavi, K. Poulios, Y. Kadin, C.F. Niordson, Finite element study of cyclic plasticity near a subsurface inclusion under rolling contact and macro-residual stresses, Int. J. Fatigue, 143 (2021) 105981.
[14] C.S. Li, X.H. Liu, G.D. Wang, X.M. He, Threedimensional FEM analysis of work roll temperature field in hot strip rolling, J. Mater. Sci. Technol., 18(10) (2002) 1147-1150.
[15] J.D. Lee, M.T. Manzari, Y.L. Shen, W. Zeng, A finite element approach to transient thermal analysis of work rolls in rolling process, J. Manuf. Sci. Eng., 122(4) (2000) 706-716.
[16] D. Benasciutti, E. Brusa, G. Bazzaro, Finite elements prediction of thermal stresses in work roll of hot rolling mills, Procedia Eng., 2(1) (2010) 707-716.
[17] D. Benasciutti, On thermal stress and fatigue life evaluation in work rolls of hot rolling mill, J. Strain Anal. Eng. Des., 47(5) (2012) 297-312. [18] G.Y. Deng, H.T. Zhu, A.K. Tieu, L.H. Su, M. Reid, L. Zhang, P.T. Wei, X. Zhao, H. Wang, J. Zhang, J.T. Li, T.D. Ta, Q. Zhu, C. Kong, Q. Wu, Theoretical and experimental investigation of thermal and oxidation behaviors of a high speed steel work roll during hot rolling, Int. J. Mech. Sci., 131-132 (2017) 811-826.
[19] G.Y. Deng, Q. Zhu, K. Tieu, H.T. Zhu, M. Reid, A.A. Saleh, L.H. Su, T.D. Ta, J. Zhang, C. Lu, Q. Wu, D.L. Sun, Evolution of microstructure, temperature and stress in a high speed steel work roll during hot rolling: Experiment and modelling, J.
Mater. Process. Technol., 240 (2017) 200-208.
[20] Simulia ABAQUS 6.11. ABAQUS Analysis User,s Manual. HKS Inc., Providence, RI, USA, (2011).
[21] S. Shida, Empirical formula of flow stress of carbon steels resistance to deformation of carbon steels at elevated temperature, Journal of the Japan Society for Technology of Plasticity, 10(103) (1969) 610-617. [22] R.B. Sims, The calculation of roll force and torque in hot rolling mills, Proc. Inst. Mech. Eng., 168(1) (1954) 191-200.
[23] N.A. Noda, K. Hu, Y. Sano, K. Ono, Y. Hosokawa, Residual stress simulation for hot strip bimetallic roll during quenching, Steel Res. Int., 87(11) (2016) 1478-1488.
[24] N.A. Noda, Y. Sano, M. Radzi Aridi, K. Tsuboi, N. Oda, Residual stress differences between uniform and non-uniform heating treatment of bimetallic roll: Effect of creep behavior on residual stress, Metals, 8 (2018) 952.
[25] A. Melander, M. Larsson, The effect of stress amplitude on the cause of fatigue crack initiation in a spring steel, Int. J. Fatigue, 15(2) (1993) 119-131.
[26] S. Aguado-Montero, J. V´azquez, C. Navarro, J. Dom´ınguez, Optimal shot peening residual stress profile for fatigue, Theor. Appl. Fract. Mech., 116 (2021) 103109.