[1] API RP 581 FOURTH EDITION, risk-based inspection technology, American Petroleum Institute, Washington DC, USA, (JANUARY 2025) 321-326. (https://www.dnv.com/Images/SynergiPlant-3rd-edition-of-the-API-RP-581-RBIstandard-and-application-within-the-frenchprocess-industries-whitepaper tcm8-71747.pdf)
[2] R. Moradi, K. M. Groth. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis, Int. J. Hydrogen Energy, 44(23) (2019) 12254-12269.
[3] M. Aziz, Liquid hydrogen: A review on liquefaction, storage, transportation, and safety, Energies, 14(18) (2021) 5917.
[4] U.Khan, T. Yamamoto, H. Sato, An insight into potential early adopters of hydrogen fuel-cell vehicles in Japan, Int. J. Hydrogen Energy, 46(18) (2021) 10589-10607.
[5] A. Smaragdakis, S. Kamenopoulos, T. Tsoutsos, How risky is the introduction of fuel cell electric vehicles in a Mediterranean town?. Int. J. Hydrogen Energy, 45(35) (2020)18075-18088.
[6] D. K. Ross, Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum, 80(10) (2006) 1084-1089.
[7] G. Huang, J. Zheng, Z. Hua, B. Liao, An Introduction to China National Standard for OnBoard High-Pressure Hydrogen Storage Cylinders, In Pressure Vessels and Piping Conference (Vol. 58929, p. V001T01A079), American Society of Mechanical Engineers. (2019, July).
[8] X. Xu, H. Xu, J. Zheng, L. Chen, J. Wang, A highefficiency liquid hydrogen storage system cooled by a fuel-cell-driven refrigerator for hydrogen combustion heat recovery, Energy Convers. Manag., 226 (2020) 113496.
[9] N. A. Ali, N. A. Sazelee, M. Ismail, An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. Int. J. Hydrogen Energy, 46(62) (2021) 31674-31698.
[10] C. Y¨uksel Alpaydın, C. O. Colpan, M. U. Karao˘glan, S. Karahan G¨ulbay, A Comparison of the Effects of Sodium Borohydride-Based Hydrogen Storage System and Compressed Hydrogen Storage Tank on the Fuel Cell Vehicle Performance, J. Energy Resour. Technol., 143(12) (2021)
120909.
[11] M. Dadashzadeh, S. Kashkarov, D. Makarov, V. Molkov, Risk assessment methodology for onboard hydrogen storage, Int. J. Hydrogen Energy, 43(12) (2018) 6462-6475.
[12] M. Dadashzadeh, S. Kashkarov, D. Makarov, V. V. Molkov, Socio-economic analysis and quantitative risk assessment methodology for safety design of onboard storage systems, Proceedding of Hydrogen tools conference, (2017) 184.
[13] K. Sun, Z. Li, Quantitative risk analysis of life safety and financial loss for road accident of fuel cell vehicle, Int. J. Hydrogen Energy, 44(17) (2019) 8791-8798.
[14] A. Tutunchi, M. Eskandarzade, K. OsouliBostanabad, R. Shahrivar, Risk assessment of an urban natural gas polyethylene piping system, J. Pipeline Syst. Eng. Pract., 11(2) (2020) 06019005.
[15] M. Eskandarzade, R. C. Ratnayake, M. N. Ershadi, Mechanization of qualitative risk based inspection analysis, In 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (2020, December) 401-406. IEEE.
[16] D. A. Crowl, J. F. Louvar, Chemical process safety: fundamentals with applications, Pearson Education, (2001).
[17] M. Eskandarzade, M. Najafi Ershadi, B. Abbaszadeh, S. M. Arab, Ratnayake RC. Consequence assessment of hazardous liquid pipelines using gray relational analysis, J. Pipeline Syst. Eng. Pract., 1 (2023); 14(1):04022051.
[18] M. Eskandarzade, R. Shahrivar, R. C. Ratnayake, U. N. Bukhari, An optimal approach for semiquantitative risk-based inspection of pipelines, J. Pipeline Syst. Eng. Pract., 13(3) (2022) 04022017.
[19] B. Li, B. Han, Q. Li, W. Gao, C. Guo, H. Lv, M. Bi, Study on hazards from high-pressure on-board type III hydrogen tank in fire scenario: Consequences and response behaviours, Int. J. Hydrogen Energy, 47(4) (2022) 2759-2770.
[20] M. Zhang, H. Lv, H. Kang, W. Zhou, C. Zhang, A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks, Int. J. Hydrogen Energy 44(47) (2019) 25777-25799.