[1] L. D. C Ramalho, R. D. S. G. Campilho, J. Belinha, L. F. M. da Silva, Static strength prediction of adhesive joints: a review, Int. J. Adhes. Adhes., 96 (2020) 102451.
[2] A. Akhavan-Safar, F. Ramezani, F. Delzendehrooy, M. R. Ayatollahi, L. F. M. da Silva, A review on bi-adhesive joints: benefits and challenges, Int. J. Adhes. Adhes., 114 (2022) 103098.
[3] J. F. Durodola, Functionally graded adhesive joints-A review and prospects, Int. J. Adhes. Adhes., 76 (2017) 83-100.
[4] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, A. Wang, J. K. Spelt, Analytical models of adhesively bonded joints-Part I: literature survey, Int. J. Adhes. Adhes., 29(3) (2009) 319-330.
[5] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, A. Wang, J. K. Spelt, Analytical models of adhesively bonded joints-Part II: comparative study, Int. J. Adhes. Adhes., 29(3) (2009) 331-341.
[6] R. J. C. Carbas, L. F. M. da Silva, G. W. Critchlow, M. A. V. Figueiredo, Effect of adhesive type and thickness on the lap shear strength, J. Adhes, 82(11) (2006) 1091-1115.
[7] I. L. Pires, M. F. S. F. de Moura, R. D. S. G. Campilho, Performance of bi-adhesive bonded aluminium lap joints, Int. J. Adhes. Adhes., 23(3) (2003) 215-223.
[8] S. K. Kong, Y. K. Jo, T. H. Kim, J. W. Kim, Three-dimensional finite element analysis of the stress distribution in bi-adhesive bonded joints, J. Adhes., 84(2) (2008) 105-126.
[9] Z. Jia, J. Yu, Q. Liu, S. Yu, Z. Wang, functionally graded adhesive joints with exceptional strength and toughness by graphene nanoplatelets reinforced epoxy adhesives, Int. J. Adhes. Adhes., 125 (2023) 103402.
[10] M. A. Khan, R. Tipireddy, B. Dattaguru, S. Kumar, Stochastic modeling of functionally graded double-lap adhesive joints, Mech. Mate, 177 (2023) 104553.
[11] S. M. Hasheminia, B. C. Park, H. J. Chun, J. C. Park, H. S. Chang, Failure mechanism of bonded joints with similar and dissimilar material, Compos Part B Eng., 161 (2019) 702-709.
[12] J. Monteiro, A. Akhavan-Safar, R. Carbas, E. Marques, R. Goyal, M. El-Zein, L. Da Silva, F Mode II modeling of adhesive materials degraded by fatigue loading using cohesive zone elements, Theor. Appl. Fract. Mech., 103 (2019)102253.
[13] M. V. Fern´andez, M .F. S. F. de Moura, L. F. M. da Silva, A. T. Marques, Composite delamination rate simulation, Materials (Basel), 12(1) (2019) 181.
[14] M. F. S. F. de Moura, R. D. S. G. Campilho, J. J. L. Morais, Development of a cohesive zone model for fatigue/fracture characterization of composite bonded joints under Mode II loading, Int. J. Adhes. Adhes., 54 (2014) 224-230.
[15] M. H. Kim, H. S. Hong, Y. C. Kim, Determination of failure envelope of functionally graded adhesivebonded joints by using mixed-mode continuum damage model and response surface method, Int. J. Adhes. Adhes., 106 (2021) 102815.
[16] C. I. da Silva, M. R. O. Cunha, A. Q. Barbosa, R. J. C. Carbas, E. A. S. Marques, L. F. M. da Silva, functionally graded adhesive joints using magnetic microparticles with a polyurethane adhesive, J. Adv. Join. Process., 3 (2021) 100048.
[17] F. Ramezani, M. R. Ayatollahi, L. F. M. da Silva, F. Berto, A comprehensive experimental study on bi-adhesive single-lap joints using DIC technique, Int. J. Adhes. Adhes., 102 (2020) 102674.
[18] A. Akhavan-Safar, F. Ramezani, F. Delzendehrooy, M. R. Ayatollahi, L. F. M. da Silva, Impact fatigue life of adhesively bonded compositesteel joints enhanced with the bi-adhesive technique, Materials (Basel), 16(3) (2023) 6468.
[19] K. R. Lyathakula, Y. Wei, Z. Huang, W. Sun, A probabilistic fatigue life prediction for adhesively bonded joints, Thin Walled Struct., 164 (2021) 107863.
[20] M. Ghasemvand, B. Behjat, S. Ebrahimi, Experimental investigation of the effects of adhesive defects on the strength and creep behavior of singlelap adhesive joints at various temperatures, J Adhes., 99 (2023) 12271243.
[21] C. Fame, J. Ramˆoa Correia, E. Ghafoori, C. Wu, Damage tolerance of adhesively bonded pultruded GFRP double-strap joints, Compos. Struct., 263 (2021) 113625.
[22] N. Carrere, A. Doitrand, E. Martin, D. Leguillon, Influence of small pores on crack initiation in adhesively bonded joints: a theoretical study. International Journal of Adhesion and Adhesives, 111 (2021) 102979.
[23] T. Liang, Q. He, X. Chen, Gaussian process flow and physical model fusion driven fatigue evaluation model using Kalman filter, Proc. Inst. Mech. Eng. C J. Mech. Eng Sci., 236(21) (2022) 11054-11067.
[24] Y. Wei, W. Sun, Z. Huang, K. R. Lyathakula, Data-driven fatigue life prediction of automotive adhesive joints using Gaussian process regression with FEA-derived features, Finite Elem. Anal. Des., 233 (2024) 104225.
[25] F. Zaheri, M. Mashayekhi, Reliability-based design optimization for adhesive bonded joints, Adv. Mech. Eng., 16 (2024) 168781402495345.
[26] S. K. Panigrahi, S. K. Nimje, Design and analysis of functionally graded adhesively bonded joints of FRP composites, Boca Raton: CRC Press; (2023).
[27] M. Sadeghi, N. Carrere, D. Leguillon, A. Doitrand, E. Martin, Extended Finite Element Method (XFEM) and VCCT for adhesive crack predictions: a comparative study, Materials, 18(15) (2023) 3557.
[28] X.C. He, Finite Element Analysis of Adhesively Bonded Single-lap Joints, Adv. Mater. Res., 129 (2010) 411-415.
[29] A. B. A. Basri, D. W. Chae, H. Lee, Finite Element Model Updating of Composite with Adhesive Jointed Structure Under Built-up Internal Stress, J. Vibration Control, 28(1112) (20222) 21912207.
[30] Z. Jia, J. Yu, Q. Liu, S. Yu, Z. Wang, functionally graded adhesive joints with exceptional strength and toughness by graphene nanoplatelets reinforced epoxy adhesives, Int. J. Adhes. Adhes., 125 (2023) 103402.
[31] C. D. Wei, Q. R. Chen, M. Chen, L. Huang, Z. J. Yue, S.G. Li, J. Wang, L. Chen, C. Tong, Q. Liu. Predicting fatigue life of automotive adhesive bonded joints: A data-driven approach using combined experimental and numerical datasets, Adv.
Manuf., 12 (2024) 522537.
[32] M. Ries/ Mechanical behavior of adhesive joints: A review on modeling techniques, Comput. Methods Mater. Sci., 24(4) (2024) 535.
[33] J. B. Marques, A. Q. Barbosa, K. Houjou, C. I. Da Silva, A. J. C. Carbas, L. F. M. Da Silva. An overview of manufacturing functionally graded adhesives- Challenges and prospects, The Journal of Adhesion, 97(2) (2021) 172-206.
[34] K. Anasiewicz, J. Kuczmaszewski, Apparent Youngs modulus of the adhesive in numerical modeling of adhesive Joints, Materials, 14(328) (2021)1-11. https://doi.org/10.3390/ma14020328
[35] Z. Wang, J. Li, L. Sui, G. Xian, Effects of adhesive property and thickness on the bond performance between carbon fiber reinforced polymer laminate and steel. Thin-Walled Struct., (2021), 158: 107176.
[36] A. Sajjadi, H. R. Ezatpour, H. Beygi, Microstructure and mechanical properties of AlAlO microand nano- composites fabricated by stir casting. Mater Sci Eng A. (2011), 528 (2425): 87658771. doi:10.1016/j.msea.2011.08.052
[37] N. Stein, .PL. Rosendahl, W. Becker, Homogenization of mechanical and thermal stresses in functionally graded adhesive joints, Composites Part B: Engineering, 111 (2017) 279-293. https://doi.org/10.1016/j.compositesb.2016.11.061