Stress Analysis in Double-Lap Adhesively Bonded FG Adherend Joints Using FEM and ANN

Document Type : Original Research Paper

Authors

Department of Faculty Engineering, University of Kurdistan, Sanandaj, Iran.

10.22084/jrstan.2025.31011.1269

Abstract

 This study presents a comprehensive numerical investigation of stress distribution in double-lap adhesive joints between functionally graded material (FGM) adherends. Using three-dimensional finite element analysis (FEA) in ABAQUS, this study examined the effects of adhesive thickness, material gradation, and applied load on joint performance. To enhance computational efficiency and predictive capabilities, a feedforward artificial neural network (ANN) model was also developed and trained using simulation data. The results show that adhesive thickness has a significant influence on peak shear stress, with an optimal thickness of 0.2mm minimizing stress concentrations under both 10kN and 50kN tensile loads. The inclusion of FGMs in the adherends improved stress distribution due to the gradual transition in material properties from ceramic to metal. The ANN model, trained on FEA outputs, achieved a high correlation (R2>0.99) and minimal error (MSE<0.001), validating its capability to provide rapid and accurate stress prediction. The proposed hybrid FEA-ANN framework provides a reliable and efficient tool for designing adhesive joints with graded materials. This approach can be extended to optimize joint configurations in aerospace, automotive, and structural applications where weight and stress management are critical.

Keywords


[1] L. D. C Ramalho, R. D. S. G. Campilho, J. Belinha, L. F. M. da Silva, Static strength prediction of adhesive joints: a review, Int. J. Adhes. Adhes., 96 (2020) 102451.
[2] A. Akhavan-Safar, F. Ramezani, F. Delzendehrooy, M. R. Ayatollahi, L. F. M. da Silva, A review on bi-adhesive joints: benefits and challenges, Int. J. Adhes. Adhes., 114 (2022) 103098.
[3] J. F. Durodola, Functionally graded adhesive joints-A review and prospects, Int. J. Adhes. Adhes., 76 (2017) 83-100.
[4] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, A. Wang, J. K. Spelt, Analytical models of adhesively bonded joints-Part I: literature survey, Int. J. Adhes. Adhes., 29(3) (2009) 319-330.
[5] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, A. Wang, J. K. Spelt, Analytical models of adhesively bonded joints-Part II: comparative study, Int. J. Adhes. Adhes., 29(3) (2009) 331-341.
[6] R. J. C. Carbas, L. F. M. da Silva, G. W. Critchlow, M. A. V. Figueiredo, Effect of adhesive type and thickness on the lap shear strength, J. Adhes, 82(11) (2006) 1091-1115.
[7] I. L. Pires, M. F. S. F. de Moura, R. D. S. G. Campilho, Performance of bi-adhesive bonded aluminium lap joints, Int. J. Adhes. Adhes., 23(3) (2003) 215-223.
[8] S. K. Kong, Y. K. Jo, T. H. Kim, J. W. Kim, Three-dimensional finite element analysis of the stress distribution in bi-adhesive bonded joints, J. Adhes., 84(2) (2008) 105-126.
[9] Z. Jia, J. Yu, Q. Liu, S. Yu, Z. Wang, functionally graded adhesive joints with exceptional strength and toughness by graphene nanoplatelets reinforced epoxy adhesives, Int. J. Adhes. Adhes., 125 (2023) 103402.
[10] M. A. Khan, R. Tipireddy, B. Dattaguru, S. Kumar, Stochastic modeling of functionally graded double-lap adhesive joints, Mech. Mate, 177 (2023) 104553.
[11] S. M. Hasheminia, B. C. Park, H. J. Chun, J. C. Park, H. S. Chang, Failure mechanism of bonded joints with similar and dissimilar material, Compos Part B Eng., 161 (2019) 702-709.
[12] J. Monteiro, A. Akhavan-Safar, R. Carbas, E. Marques, R. Goyal, M. El-Zein, L. Da Silva, F Mode II modeling of adhesive materials degraded by fatigue loading using cohesive zone elements, Theor. Appl. Fract. Mech., 103 (2019)102253.
[13] M. V. Fern´andez, M .F. S. F. de Moura, L. F. M. da Silva, A. T. Marques, Composite delamination rate simulation, Materials (Basel), 12(1) (2019) 181.
[14] M. F. S. F. de Moura, R. D. S. G. Campilho, J. J. L. Morais, Development of a cohesive zone model for fatigue/fracture characterization of composite bonded joints under Mode II loading, Int. J. Adhes. Adhes., 54 (2014) 224-230.
[15] M. H. Kim, H. S. Hong, Y. C. Kim, Determination of failure envelope of functionally graded adhesivebonded joints by using mixed-mode continuum damage model and response surface method, Int. J. Adhes. Adhes., 106 (2021) 102815.
[16] C. I. da Silva, M. R. O. Cunha, A. Q. Barbosa, R. J. C. Carbas, E. A. S. Marques, L. F. M. da Silva, functionally graded adhesive joints using magnetic microparticles with a polyurethane adhesive, J. Adv. Join. Process., 3 (2021) 100048.
[17] F. Ramezani, M. R. Ayatollahi, L. F. M. da Silva, F. Berto, A comprehensive experimental study on bi-adhesive single-lap joints using DIC technique, Int. J. Adhes. Adhes., 102 (2020) 102674.
[18] A. Akhavan-Safar, F. Ramezani, F. Delzendehrooy, M. R. Ayatollahi, L. F. M. da Silva, Impact fatigue life of adhesively bonded compositesteel joints enhanced with the bi-adhesive technique, Materials (Basel), 16(3) (2023) 6468.
[19] K. R. Lyathakula, Y. Wei, Z. Huang, W. Sun, A probabilistic fatigue life prediction for adhesively bonded joints, Thin Walled Struct., 164 (2021) 107863.
[20] M. Ghasemvand, B. Behjat, S. Ebrahimi, Experimental investigation of the effects of adhesive defects on the strength and creep behavior of singlelap adhesive joints at various temperatures, J Adhes., 99 (2023) 12271243.
[21] C. Fame, J. Ramˆoa Correia, E. Ghafoori, C. Wu, Damage tolerance of adhesively bonded pultruded GFRP double-strap joints, Compos. Struct., 263 (2021) 113625.
[22] N. Carrere, A. Doitrand, E. Martin, D. Leguillon, Influence of small pores on crack initiation in adhesively bonded joints: a theoretical study. International Journal of Adhesion and Adhesives, 111 (2021) 102979.
[23] T. Liang, Q. He, X. Chen, Gaussian process flow and physical model fusion driven fatigue evaluation model using Kalman filter, Proc. Inst. Mech. Eng. C J. Mech. Eng Sci., 236(21) (2022) 11054-11067.
[24] Y. Wei, W. Sun, Z. Huang, K. R. Lyathakula, Data-driven fatigue life prediction of automotive adhesive joints using Gaussian process regression with FEA-derived features, Finite Elem. Anal. Des., 233 (2024) 104225.
[25] F. Zaheri, M. Mashayekhi, Reliability-based design optimization for adhesive bonded joints, Adv. Mech. Eng., 16 (2024) 168781402495345.
[26] S. K. Panigrahi, S. K. Nimje, Design and analysis of functionally graded adhesively bonded joints of FRP composites, Boca Raton: CRC Press; (2023).
[27] M. Sadeghi, N. Carrere, D. Leguillon, A. Doitrand, E. Martin, Extended Finite Element Method (XFEM) and VCCT for adhesive crack predictions: a comparative study, Materials, 18(15) (2023) 3557.
[28] X.C. He, Finite Element Analysis of Adhesively Bonded Single-lap Joints, Adv. Mater. Res., 129 (2010) 411-415.
[29] A. B. A. Basri, D. W. Chae, H. Lee, Finite Element Model Updating of Composite with Adhesive Jointed Structure Under Built-up Internal Stress, J. Vibration Control, 28(1112) (20222) 21912207.
[30] Z. Jia, J. Yu, Q. Liu, S. Yu, Z. Wang, functionally graded adhesive joints with exceptional strength and toughness by graphene nanoplatelets reinforced epoxy adhesives, Int. J. Adhes. Adhes., 125 (2023) 103402.
[31] C. D. Wei, Q. R. Chen, M. Chen, L. Huang, Z. J. Yue, S.G. Li, J. Wang, L. Chen, C. Tong, Q. Liu. Predicting fatigue life of automotive adhesive bonded joints: A data-driven approach using combined experimental and numerical datasets, Adv.
Manuf., 12 (2024) 522537.
[32] M. Ries/ Mechanical behavior of adhesive joints: A review on modeling techniques, Comput. Methods Mater. Sci., 24(4) (2024) 535.
[33] J. B. Marques, A. Q. Barbosa, K. Houjou, C. I. Da Silva, A. J. C. Carbas, L. F. M. Da Silva. An overview of manufacturing functionally graded adhesives- Challenges and prospects, The Journal of Adhesion, 97(2) (2021) 172-206.
[34] K. Anasiewicz, J. Kuczmaszewski, Apparent Youngs modulus of the adhesive in numerical modeling of adhesive Joints, Materials, 14(328) (2021)1-11. https://doi.org/10.3390/ma14020328
[35] Z. Wang, J. Li, L. Sui, G. Xian, Effects of adhesive property and thickness on the bond performance between carbon fiber reinforced polymer laminate and steel. Thin-Walled Struct., (2021), 158: 107176.
[36] A. Sajjadi, H. R. Ezatpour, H. Beygi, Microstructure and mechanical properties of AlAlO microand nano- composites fabricated by stir casting. Mater Sci Eng A. (2011), 528 (2425): 87658771. doi:10.1016/j.msea.2011.08.052
[37] N. Stein, .PL. Rosendahl, W. Becker, Homogenization of mechanical and thermal stresses in functionally graded adhesive joints, Composites Part B: Engineering, 111 (2017) 279-293. https://doi.org/10.1016/j.compositesb.2016.11.061