[1] M. Chen, F. Lu, R. Wang, A. Ren, (2014). Structural integrity assessment of the reactor pressure vessel under the pressurized thermal shock loading, Nucl. Eng. Des., 272, 84-91.
[2] D. F. Mora, M. Niffenegger, G. Qian, M. Jaros, B. Niceno, (2019). Modelling of reactor pressure vessel subjected to pressurized thermal shock using 3D-XFEM, Nucl. Eng. Des., 353, 110237.
[3] N. Amir, A. Farzin, (2017). Modeling of PWR reactor pressure chamber and evaluation of stresses caused by thermal shocks during a periodic period of thermal transients., in The first competition of the comprehensive international conference of engineering sciences in Iran.
[4] Z. G. Saeed, K. Nima, (2021). Small Modular Reactors in Nuclear Industry, Tehran: Simaye Danesh.
[5] A. International Atomic Energy, Advances in Small Modular Reactor Technology Developments A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2020 Edition, International Atomic Energy Agency (IAEA), 2020.
[6] H. Shirani, (2021). Nuclear power plants and small modular reactors (SMRs), Construction science and techniques, 1(4), 35-51.
[7] E. S. Zarifi, F. Kamran Ghaffari, Neutronic Parameters Analyses of SMART Advanced Small Modular Reactor Core, in Iranian Physics Conference Paper, (2018).
[8] Z. Liu, J. Fan, (2014). Technology readiness assessment of Small Modular Reactor (SMR) designs, Prog. Nucl. Energy., 70, 20-28.
[9] M. Cooper, (2014). Small modular reactors and the future of nuclear power in the United States, Energy Res. Soc. Sci., 3, 161-177.
[10] D. T. Ingersoll, Z. J. Houghton, R. Bromm, C. Desportes, (2014). NuScale small modular reactor for Co-generation of electricity and water, Desalination, vol. 340, pp. 84-93.
[11] S.-H. Kim, K. K. Kim, J. W. Yeo, M. H. Chang, and S. Q. Zee, (2003). Design verification program of SMART, technology, 1, 2.
[12] N. N. Alekseenko, A. Amaev, I. Gorynin, V. Nikolaev, (1997). Radiation damage of nuclear power plant pressure vessel steels.
[13] M. R. Honarkar, K. Vaezi, A. Naeim Matajie Kajvari, R. Nazari, (2014). Simulating the failure mechanism of the pressure chamber of Bushehr reactor, in Iran nuclear conference.
[14] P. P. Devang Desai, Sangram A. Gawande, (2014). A Study on Design by Analysis Approach Accordance to Asme Code, 9.
[15] M. Ishida, Development of new nuclear power plant in Argentina.
[16] V. Payghan, D. N. Jadhav, G. Y. Savant, S. Bharadwaj, Design & Analysis of Steam Drum Based on ASME Boiler and Pressure Vessel Code, Section VIII Div. 2 Div. 3. pp. 511-517.
[17] A. El-Kabbany, Y. Miao, ASME Section VIII Div. 2 Finite Element Elastic Plastic Analysis MethodA Case Study.
[18] Z. Mirski, K. Bany´s, Z. Faek, T. Piwowarczyk, (2014). FEM-aided Design of Welded Pressure Vessels According to ASME BPVC Regulations, Biuletyn Instytutu Spawalnictwa w Gliwicach, 58(5), 114-121.
[19] J. R. Sims, Engineered Pressure Vessels for Marine Service Using Asme Section VIII, Division 2 and Division 3 Pressure Vessel Codes.
[20] A. Zandi Baghcheh Maryam, S. Kamarkhani, (2017). Investigation and analysis of internal pressure vessels using ANSYS finite element software, in The second international conference on new research achievements in mechanics, industries and aerospace.
[21] G. Chan, A. Tooth, J. Spence, (1998). An experimental study of the collapse of horizontal saddle-supported storage vessels, Proceedings of the Institution of Mechanical Engineers, Proc. Inst. Mech. Eng. E, 212(3), 183-195.
[22] BPVC Section II-Materials-Part D-Properties, ASME, 2019, p. 1256.
[23] BPVC Section VIII-Rules for Construction of Pressure Vessels Division 2-Alternative Rules, ASME, (2019), p. 872.
[24] M. Torabi, (2019). Finite element design of pressure vessels and heat exchangers (according to ASME Sec.vlll Div. 2- part 5): Idehnegar.
[25] D. L. P. E. DE experimentos, and M. D. R. RA, Proyecto Integrador Carrera de Ingeniera Nuclear, 2014.