[1] J. Kee Paik, A. K. Thayamballi, G. Sung Kim, (1999). Strength characteristics of aluminum honeycomb sandwich panels, Thin-Walled Struct., vol. 35, no. 3, pp. 205-231.
[2] J. H. Lee, S. H. Kang, Y. J. Ha, S. G. Hong, (2018). Structural Behavior of Durable Composite Sandwich Panels with High Performance Expanded Polystyrene Concrete, Int. J. Concr. Struct. Mater., 12(1), 14.
[3] L. Zhang, Y. Chen, R. He, X. Bai, K. Zhang, S. Ai, Y. Yang, D. Fang, (2020.). Bending behavior of lightweight C/SiC pyramidal lattice core sandwich panels, Int. J. Mech. Sci., 171, p. 105409.
[4] J. Wetzel, (2009). The impulse response of extruded corrugated core aluminum sandwich structures, Ph.D. dissertation, University of Virginia.
[5] J. M. Davies, Sandwich panels, (1993). ThinWalled Struct., 16(1-4), 179-198.
[6] A. Cherniaev, (2021). Modeling of hypervelocity impact on open cell foam core sandwich panels, Int. J. Impact Eng., 155, p. 103901.
[7] A. B. H. Kueh and Y. Y. Siaw, (2021). Impact resistance of bio-inspired sandwich beam with side-arched and honeycomb dual-core, Compos. Struct., 275, p. 114439.
[8] I. Kreja, (2011). A literature review on computational models for laminated composite and sandwich panels, Cent. Eur. J. Eng., 1(1), 59-80.
[9] Y. Hou, Y. H. Tai, C. Lira, F. Scarpa, J. R. Yates, and B. Gu, (2013). The bending and failure of sandwich structures with auxetic gradient cellular cores, Compos. Part A Appl. Sci. Manuf., 49, 119-131.
[10] H. Yazdani Sarvestani, A. H. Akbarzadeh, H. Niknam, and K. Hermenean, (2018). 3D printed architected polymeric sandwich panels: Energy absorption and structural performance, Compos. Struct., 201, 1122-1133.
[11] R. M. Jones, (1998). Mechanics of Composite Materials, 2nd ed. Boca Raton, FL, USA: CRC Press.
[12] R. E. Shalin, Ed., (1998). Polymer Matrix Composites. Boston, MA, USA: Springer.
[13] M. R. Kessler, (2012). Polymer Matrix Composites: A Perspective for a Special Issue of Polymer Reviews, Polym. Rev., 52(3-4), 229-233.
[14] M. Elkington, D. Bloom, C. Ward, A. Chatzimichali, K. Potter, (2015). Hand layup: understanding the manual process, Adv. Manuf. Polym. Compos. Sci., 1(3), 138-151.
[15] R. O. Buckingham, G. C. Newell, (1996). Automating the manufacture of composite broadgoods, Compos. Part A Appl. Sci. Manuf., 27(3), 191-200.
[16] T. Li, L. Wang, (2017). Bending behavior of sandwich composite structures with tunable 3Dprinted core materials, Compos. Struct., 175, 46-57.
[17] M. Aadithya, V. K. Kirubakar, T. Aakash, C. Senthamaraikannan, (2020). Investigation of the tensile and flexural behavior of polylactic acid based jute fiber bio composite, Key Eng. Mater., 841, 283-287.
[18] I. Ozen, K. Cava, H. Gedikli, U. Alver, M. Aslan, (2020). Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores, Compos. Struct., 252, p. 112699.
[19] X. Hao, H. Zhou, Y. Xie, H. Mu, Q. Wang, (2018). Sandwich-structured wood flour/HDPE composite panels: Reinforcement using a linear lowdensity polyethylene core layer,” Constr. Build. Mater., 164, 489-496.
[20] F. Habib, F. N. Habib, P. Iovenitti, S. H. Masood, M. Nikzad, (2018). Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology, Mater. Des., 155, 86-98.
[21] H. Xie, C. Shen, H. Fang, J. Han, W. Cai, (2022). Flexural property evaluation of web reinforced GFRP-PET foam sandwich panel: Experimental study and numerical simulation, Compos. Part B Eng., 234, p. 109725.