Effect of Finite Size on the Thermal Conductivity of MgO: A Molecular Dynamics Study

Document Type : Original Research Paper

Authors

1 Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.

2 Department of Mechanical Engineering, Imam Khomeini International University, Qazvin, Iran.

10.22084/jrstan.2025.31739.1272

Abstract

 Magnesium oxide (MgO) nanostructures have garnered considerable interest due to their distinctive characteristics, including a high surface-to-volume ratio, enhanced chemical reactivity, and exceptional thermal and mechanical stability. In this study, the thermal conductivity of MgO nanostructures was systematically investigated across various simulation configurations by using molecular dynamics study (MD) and Born–Mayer–Huggins potential. Two sets of simulations were conducted: one involving nanostructures of varying lengths with a fixed cross-sectional width, and another involving structures of constant length with variable cross-sectional widths. The results demonstrate a clear positive correlation between crystal length and thermal conductivity at room temperature, with conductivity values approaching approximately 27W·m1·K1 for sufficiently long structures. In contrast, variations in cross-sectional width were found to have negligible impact on thermal conductivity (ranging from 11.9 to 12.5W·m1·K1), indicating that length plays a more dominant role in heat transport within MgO nanostructures. The data presented in this study may also exhibit up to a 5% deviation from the actual values.

Keywords


[1] T. Seetawan, G. Wong-Ud-Dee, C. Thanachayanont, A. Vittaya, (2010). Molecular dynamics simulation of strontium titanate, Chin. Phys. Lett., 27, p. 0260501.
[2] J. A. Slifka, D. K. Filla, J. M. Phelps, (1998). Thermal conductivity of magnesium oxide from absolute, steady-state measurements, J. Res. Natl. Inst. Stand. Technol., 357.
[3] X. Sun, Q. Chen, Y. Chu, C. Wang, (2005). Properties of MgO at high pressure: shell-model molecular dynamics simulation, Physica B, 187-188.
[4] B. G. Dick, A. W. Overhauser, (1958). Theory of the dielectric constants of alkali halide crystals, Phys., 90.
[5] E. S. Lee, S. M. Lee, D. J. Shanefield, W. R. Cannon, (2008). Enhanced thermal conductivity
of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin, J. Am. Ceram. Soc., 91(4), 1169-1174.
[6] K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K. Mitsuishi, K. Watari, (2010). Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces, J. Mater. Chem., 20(14), 2749-2752.
[7] B. Deepanraj, N. Senthilkumar, G. Hariharan, T. Tamizharasan, T. T. Bezabih, (2022). Numerical modelling, simulation, and analysis of the endmilling process using DEFORM-3D with experimental validation, Adv. Mater. Sci. Eng., 2022, Article ID 5692298.
[8] M. Tanimoto, T. Yamagata, K. Miyata, S. Ando, (2013). Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity, ACS Appl. Mater. Interfaces, 5(11), 4374-4382.
[9] S. Li, X. Yang, J. Hou, W. Du, (2020). A review on thermal conductivity of magnesium and its alloys, J. Magnes. Alloys, 8, 78-90.
[10] J. Bai, Y. Yang, C. Wen, J. Chen, G. Zhou, B. Jiang, X. Peng, F. Pan, (2023). Applications of magnesium alloys for aerospace: a review, J. Magnes. Alloys, 11, 3609-3619.
[11] W. Zhang, M. Ma, J. Yuan, et al., (2020). Microstructure and thermophysical properties of Mg2ZnxCu alloys, Trans. Nonferrous Met. Soc. China, 30, 1803-1815.
[12] G. Li, J. Zhang, R. Wu, et al., (2018). Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment, J. Mater. Sci. Technol., 34, 1076-1084.
[13] V. Bazhenov, A. Koltygin, M. Sung, et al., (2021). Development of Mg-Zn-Y-Zr casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 9, 1567-1577.
[14] J. Rong, J. Zhu, W. Xiao, X. Zhao, and C. Ma, (2021). A high pressure die cast magnesium alloy with superior thermal conductivity and high strength, Intermetallics, 139, Article ID 107350. 
[15] G. Hodes, (2007). Advanced Materials, 27, 639- 657.
[16] S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, M. Okano, (1999). Alignment and stacking of semiconductor photonic bandgaps by waferfusion, Lightwave Technol., 1948-1955.
[17] W. Qingqing, X. Gang, H. Gaorong, (2005). Solvothermal synthesis and characterization of uniform CdS nanowires in high yield, Solid State Chem., 178, 2680-2685.
[18] M. C. Wu, J. S. Corneille, C. A. Estrada, J. W. He, D. W. Goodman, (1991). Synthesis and characterization of ultra-thin MgO films on Mo (100), Chem. Phys. Lett., 182, 472-478.
[19] Y. W. Choi, J. Kim, (2004). Reactive sputtering of magnesium oxide thin film for plasma display panel applications, Thin Solid Films, 295-299.
[20] H.-A. Cha, S.-J. Ha, M.-G. Jo, Y. K. Moon, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, and D. K. Kim, (2024). Three-dimensional MgO filler networking composites with significantly enhanced thermal conductivity, Adv. Compos. Hybrid Mater., 7(1), 1-11.
[21] J.-Y. Jeon, Y.-R. Kwak, D.-G. Shin, H.-A. Cha, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, Y. K. Moon, (2023). Humidity-stable submicron magnesium oxide particles for high-performance thermally conductive composites, J. Mater. Chem. A, 11(38), 20096-20104.
[22] J. Luo, R. Stevens, and R. Taylor, (1997). Thermal diffusivity/conductivity of magnesium oxide/silicon carbide composites, J. Am. Ceram. Soc., 80(4), 1004-1008.
[23] A. Rudajevov´a, P. Luk´aˇc, (2000). Thermal diffusivity and thermal conductivity of Mg alloys, Acta Univ. Carol. Math. Phys., 41(1), 3-36.