[1] T. Seetawan, G. Wong-Ud-Dee, C. Thanachayanont, A. Vittaya, (2010). Molecular dynamics simulation of strontium titanate, Chin. Phys. Lett., 27, p. 0260501.
[2] J. A. Slifka, D. K. Filla, J. M. Phelps, (1998). Thermal conductivity of magnesium oxide from absolute, steady-state measurements, J. Res. Natl. Inst. Stand. Technol., 357.
[3] X. Sun, Q. Chen, Y. Chu, C. Wang, (2005). Properties of MgO at high pressure: shell-model molecular dynamics simulation, Physica B, 187-188.
[4] B. G. Dick, A. W. Overhauser, (1958). Theory of the dielectric constants of alkali halide crystals, Phys., 90.
[5] E. S. Lee, S. M. Lee, D. J. Shanefield, W. R. Cannon, (2008). Enhanced thermal conductivity
of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin, J. Am. Ceram. Soc., 91(4), 1169-1174.
[6] K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K. Mitsuishi, K. Watari, (2010). Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces, J. Mater. Chem., 20(14), 2749-2752.
[7] B. Deepanraj, N. Senthilkumar, G. Hariharan, T. Tamizharasan, T. T. Bezabih, (2022). Numerical modelling, simulation, and analysis of the endmilling process using DEFORM-3D with experimental validation, Adv. Mater. Sci. Eng., 2022, Article ID 5692298.
[8] M. Tanimoto, T. Yamagata, K. Miyata, S. Ando, (2013). Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity, ACS Appl. Mater. Interfaces, 5(11), 4374-4382.
[9] S. Li, X. Yang, J. Hou, W. Du, (2020). A review on thermal conductivity of magnesium and its alloys, J. Magnes. Alloys, 8, 78-90.
[10] J. Bai, Y. Yang, C. Wen, J. Chen, G. Zhou, B. Jiang, X. Peng, F. Pan, (2023). Applications of magnesium alloys for aerospace: a review, J. Magnes. Alloys, 11, 3609-3619.
[11] W. Zhang, M. Ma, J. Yuan, et al., (2020). Microstructure and thermophysical properties of Mg−2Zn−xCu alloys, Trans. Nonferrous Met. Soc. China, 30, 1803-1815.
[12] G. Li, J. Zhang, R. Wu, et al., (2018). Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment, J. Mater. Sci. Technol., 34, 1076-1084.
[13] V. Bazhenov, A. Koltygin, M. Sung, et al., (2021). Development of Mg-Zn-Y-Zr casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 9, 1567-1577.
[14] J. Rong, J. Zhu, W. Xiao, X. Zhao, and C. Ma, (2021). A high pressure die cast magnesium alloy with superior thermal conductivity and high strength, Intermetallics, 139, Article ID 107350.
[15] G. Hodes, (2007). Advanced Materials, 27, 639- 657.
[16] S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, M. Okano, (1999). Alignment and stacking of semiconductor photonic bandgaps by waferfusion, Lightwave Technol., 1948-1955.
[17] W. Qingqing, X. Gang, H. Gaorong, (2005). Solvothermal synthesis and characterization of uniform CdS nanowires in high yield, Solid State Chem., 178, 2680-2685.
[18] M. C. Wu, J. S. Corneille, C. A. Estrada, J. W. He, D. W. Goodman, (1991). Synthesis and characterization of ultra-thin MgO films on Mo (100), Chem. Phys. Lett., 182, 472-478.
[19] Y. W. Choi, J. Kim, (2004). Reactive sputtering of magnesium oxide thin film for plasma display panel applications, Thin Solid Films, 295-299.
[20] H.-A. Cha, S.-J. Ha, M.-G. Jo, Y. K. Moon, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, and D. K. Kim, (2024). Three-dimensional MgO filler networking composites with significantly enhanced thermal conductivity, Adv. Compos. Hybrid Mater., 7(1), 1-11.
[21] J.-Y. Jeon, Y.-R. Kwak, D.-G. Shin, H.-A. Cha, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, Y. K. Moon, (2023). Humidity-stable submicron magnesium oxide particles for high-performance thermally conductive composites, J. Mater. Chem. A, 11(38), 20096-20104.
[22] J. Luo, R. Stevens, and R. Taylor, (1997). Thermal diffusivity/conductivity of magnesium oxide/silicon carbide composites, J. Am. Ceram. Soc., 80(4), 1004-1008.
[23] A. Rudajevov´a, P. Luk´aˇc, (2000). Thermal diffusivity and thermal conductivity of Mg alloys, Acta Univ. Carol. Math. Phys., 41(1), 3-36.