[1] F. Khan, N. Hossain, J. J. Mim, S. M. Rahman, M. J. Iqbal, M. Billah, M. A. Chowdhury, (2025). Advances of composite materials in automobile applications-A review, J. Eng. Res., 13(2), 1001.
[2] L. Gabrehiwet, E. Abate, Y. Negussie, et al. (2023). Application of Composite Materials in Aerospace: A review, Int. J. Adv. Eng. Manag. Res., 5(3), 697.
[3] D. Ouinas, B. Bouiadjra, S. Himouri, (2012). Progressive edge cracked aluminum plate repaired with adhesively bonded composite patch under full width disband, composite, Comput. Mater. Sci., 43(13), 805-811.
[4] A. Aabid, M. Hrairi, J. Mohammad Ali, et al. (2023). A Review on Reductions in the StressIntensity Factor of Cracked Plates Using Bonded Composite Patches, Composites Materials for Aeronautical Structural Application, 15(9), 3086.
[5] L. Echer, O. Ochoa, C. E. Souza, R. J. Marczak, (2026). A modal-based shape optimization methodology for conventionally shaped patches in composite plate repair, Compos. Part B Eng., 309, 113084.
[6] R. E. Philip, A. D. Andrushia, A. Nammalvar, et al. (2023). A Comparative Study on Crack Detection in Concrete Walls Using Transfer Learning Techniques, J. Compos. Sci., 7(4), 169.
[7] A. Maleki, , M. Saeedifar, et al. (2019). The fatigue failure study of repaired aluminum plates by composite patches using acoustic mission, Eng. Fract. Mech., 210, 300-311.
[8] M. A. Bellali, B. Serier, M. Mokhtari, et al. (2021). XFEM and CZM modeling to predict the repair damage by composite patch of aircraft structures: Debonding parameters, Compos. Struct., 266, 113805.
[9] S. M. K. Mohammed, R. Mhamdia, A. Albedah, et al. (2021). Fatigue crack growth in aluminum plates repaired with different shapes of singlesided composite patches. Int. J. Adhes. Adhes., 105, 102781.
[10] H. Zarrinzadeh, M. Z. Kabir, A. Deylami, (2016). Extended finite element fracture analysis of a cracked isotropic shell repaired by composite patch, Fatigue Fract. Eng. Mater. Struct., 39(11), 1352-1365.
[11] L. Ke, C. Li, J. He, et al. (2020). Enhancing fatigue performance of damaged metallic structures by bonded CFRP patches considering temperature effects, Mater. Des., 192, 108731.
[12] A. Aabid, Y. E. Ibrahim, M. Hrairi, J. S. M. Ali, (2023). Optimization of Structural Damage Repair with Single and Double-Sided Composite Patches through the Finite Element Analysis and Taguchi Method, Materials, 16, 1581.
[13] H. Zarrinzadeh, M. Z. Kabir, A. Deylami, (2016). Extended finite element fracture analysis of a cracked isotropic shell repaired by composite patch, Fatigue Fract. Eng. Mater. Struct., 39(11), 1352.
[14] M. Abdolahi, A. Isazadeh, D. Abdolahi. (2013). Imperialist Competitive Algorithm for Solving Systems of Nonlinear Equations, Comput. Math. Appl., 65(12), 1894.
[15] H. D. Mazraeh, K. Parand, H. Farahani, et al. (2024). An improved imperialist competitive algorithm for solving an inverse form of the Huxley equation, Iran. J. Numer. Anal. Optim., 14(3), 681.
[16] T. Otani, W. Sumihira, Y. Kobayashi, M. Tanaka, (2022). Density-based topology optimization of thin plate structure with geometric nonlinearity using a three-dimensional correlational triangle element formulation, Struct. Multidiscip. Optim., 65, 282.
[17] S. S¸im¸sek, V. Kahya, G. Adıyaman, V. To˘gan, (2022). Damage detection in anisotropiclaminated composite beams based on incomplete modal data and teaching-learning-based optimization, Struct. Multidiscip. Optim., 65, 332.
[18] X. Liu, Y. He, D. Qiu, Z. Yu, (2019). Numerical optimizing and experimental evaluation of stepwise rapid high-pressure microwave curing carbon fiber/epoxy composite repair patch, Compos. Struct., 230, 111529.
[19] M. Masoudpour, A. Bagheri, M. J. Mahmoodabadi, (2024). Using a New Strategy in Imperialist Competitive Algorithm to Solve Multi-objective Problems, J. Algorithm Comput., 14(3), 681.