A Numerical and Experimental Investigation into the Effect of Welding Parameters on Thermal History in Friction Stir Welded Copper Sheets

Document Type: Original Article

Authors

Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran.

Abstract

One of the important issues in the process of Friction Stir Welding (FSW) is to determine the thermal history and its distribution in the work piece during the welding process. Several analytical and empirical relations have been suggested to estimate the amount of heat transferred to the work piece; one of the relations is Frigaad relation. In the present study, thermal history was determined for joined parts of copper sheets under various welding conditions by Frigaad relation and numerical method. Furthermore, results were compared with the experimental results which had a good agreement with numerical results. In addition, the thermal field was also determined for any welding conditions and at any given moment. By conducting this study, it is evident that the traverse velocity change mainly affects the amount of
transferred heat and change in rotational speed dramatically changes the temperature of the process.

Keywords


[1] Y.F. Sun, H. Fujii, The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints, Mater. Sci.Eng. A, 528 (2011) 5470-5475.
[2] A. Bagheri, T. Azdast, A. Doniavi, An experimental study on mechanical properties of friction stir welded ABS sheets, Mater. Des., 43 (2013) 402-409.
[3] M. Pirizadeh, T. Azdast, S. Rash Ahmadi, S. M. Shishavan, A. Bagheri, Friction stir welding of thermoplastics using a newly designed tool, Mater. Des., 54 (2014) 342-347.
[4] S. Khalilpourazary, R.A. Behnagh, R. Mahdavinejad, N. Payam, Dissimilar friction stir lap welding of Al-Mg to CuZn34: Application of grey relational analysis for optimizing process parameters, J. Comput. Appl. Res. Mech. Eng., 4 (2014) 81-88.
[5] X. Cao, M. Jahazi, Friction-stir welding of dissimilar AA 2024-T3 to AZ31B-H24 alloys, Int. J. Adv. Manuf. Technol., 46 (2010) 1259-1259.
[6] Y. Zhao, S. Jiang, S. Yang, Z. Lu, K. Yan, Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding, Int. J. Adv. Manuf. Technol., 83 (2016) 673-679.
[7] Z. Zhang, H.W. Zhang, A fully coupled thermomechanical model of friction stir welding, Int. J. Adv. Manuf. Technol., 37 (2008) 279-293.
[8] Y.F. Sun, H. Fujii, Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper, Mater. Sci. Eng. A., 527 (2010) 6879-6886.
[9] Y.M. Hwang, Z.W. Kang, Y.C. Chiou, H.H. Hsu, Experimental study on temperature distributions within the work piece during friction stir welding of aluminum alloys, Int. J. Mach. Tools Manuf., 48 (2008) 778-787.
[10] P. Xue, B.Xiao, Q. Zhang, Z. Ma, Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling, Scripta Mater., 64 (2011) 1051-1054.
[11] H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, Friction stir welding of carbon steels, Mater. Sci. Eng. A., 429 (2006) 50-57.
[12] M. Imam, K. Biswas, V. Racherla, On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys, Mater. Des., 52 (2013) 730-739.
[13] G. Buffa, A. Ducato, L. Fratini, Numerical procedure for residual stresses prediction in friction stir welding, Finite Element. Anal. Des., 47 (2011) 470- 476.
[14] D. Jacquin, B. De Meester, A. Simar, D. Deloison, F. Montheillet, C. Desrayaud, A simple Eulerian thermo mechanical modeling of friction stir welding, J. Mater. Process. Technol., 211 (2011) 57-65.
[15] F. Al-Badour, N. Merah, A. Shuaib, A. Bazoune, Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes, J. Mater. Process. Technol., 213 (2013) 1433-1439.
[16] A.R. Darvazi, M. Iranmanesh, Prediction of asymmetric transient temperature and longitudinal residual stress in friction stir welding of 304L stainless steel, Mater. Des., 55 (2014) 812-820.
[17] P. Prasanna, B.S. Rao, G.K. Rao, Finite element modeling for maximum temperature in friction stir welding and its validation, Int. J. Adv. Manuf. Technol., 51 (2010) 925-933.
[18] A. Alavi Nia, H. Omidvar, S. Nourbakhsh, Investigation of the effects of thread pitch and water cooling action on the mechanical strength and microstructure of friction stir processed AZ31, Mater. Des., 52 (2013) 615-620.
[19] R.S. Mishra, Z. Ma, Friction stir welding and processing, Mater. Sci. Eng. R: Reports, 50 (2005) 1-78.
[20] P.J. Blau, Friction Science and Technology: From Concepts to Applications, 2nd ed., Taylor & Francis, (2012).
[21] L.Z. Jin, R. Sandstrm, Numerical simulation of residual stresses for friction stir welds in copper canisters, J. Manuf. Process., 14 (2012) 71-81.
[22] F.P. Incropera, T.L. Bergman, D.P. DeWitt, A.S. Lavine, Foundations of Heat Transfer, Wiley, Limited, (2013).
[23] P. Ulysse, Three-dimensional modeling of the friction stir-welding process, Int. J. Mach. Tools Manuf., 42 (2002) 1549-1557.
[24] J. Hilgert, H.N.B. Schmidt, J.F. Dos Santos, N. Huber, Thermal models for bobbin tool friction stir welding, J. Mater. Process. Technol., 211 (2011) 197-204.