[1] M. Bayat, B.B. Sahari, M. Saleem, A. Ali, S.V. Wong, Bending analysis of a functionally graded rotating disk based on the first order shear deformation theory, Appl. Math. Model., 33 (2009) 4215-4230.
[2] A.N. Eraslan, Y. Orcan, Elasticplastic deformation of a rotating solid disk of exponentially varying thickness. Mech. Mater., 34 (2002) 423-32.
[3] S.A.H. Kordkheili, R. Naghdabadi, Thermoelastic analysis of a functionally graded rotating disk, Compos. Struct., 79 (2006) 508-16.
[4] M. Bayat, M. Saleem, B.B. Sahari, A.M.S. Hamouda, E. Mahdi, Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads, Int. J. Pres. Ves. Pip., 86 (2009) 357-372.
[5] M.H. Hojjati, S. Jafari, Variational iteration solution of elastic non uniform thickness and density rotating disks, Far. East. J. Appl. Math., 29 (2007) 185-200.
[6] M.H. Hojjati, S. Jafari, Semi-exact solution of elastic non-uniform thickness and density rotating disks by homotopy perturbation and Adomian’s decomposition methods. Part I: Elastic solution, Int. J. Pres. Ves. Pip., 85 (2008) 871-879.
[7] M.H. Hojjati, S. Jafari, Semi-exact solution of nonuniform thickness and density rotating disks. Part II: Elastic strain hardening solution, Int. J. Pres. Ves. Pip., 86 (2009) 307-18.
[8] M.H. Hojjati, A. Hassani, Theoretical and numerical analyses of rotating discs of nun-uniform thickness and density, Int. J. Pres. Ves. Pip., 25 (2008) 695-700.
[9] A. Hassani, M.H. Hojjati, G. Farrahi, R.A. Alashti, Semi-exact elastic solutions for thermo-mechanical analysis of functionally graded rotating disks, Compos. Struct., 93 (2011) 3239-3251.
[10] A. Hassani, M.H. Hojjati, G. Farrahi, R.A. Alashti, Semi-exact solution for thermo-mechanical analysis of functionally graded elastic-strain hardening rotating disks, Commun. Nonlinear. Sci. Num. Simulat., 17 (2012) 3747-3762.
[11] A. Hassani, M.H. Hojjati, E. Mahdavi, R.A. Alashti, G. Farrahi, Thermo-mechanical analysis of rotating disks with non-uniform thickness and material properties, Int. J. Pres. Ves. Pip., 98 (2012) 95-101.
[12] A. Hassani, M.H. Hojjati, A.R. Fathi, In-Plane free vibrations of annular elliptic and circular elastic plates of non-uniform thickness under classical boundary conditions, Int. Rev. Mech. Eng., 4 (2010) 112-119.
[13] G. Adomian, Solving frontier problems of physics: the decomposition method. Boston: Kluwer Academic; 1994.
[14] S.J. Liao, Beyond perturbation: introduction to the homotopy analysis method. Boca Raton: Chapman and Hall/CRC Press; 2003.
[15] S.A. Hosseini Kordkheili, M. Livani, Thermoelastic creep analysis of a functionally graded various thickness rotating disk with temperaturedependent material properties, Int. J. Pres. Ves. Pip., (2013) 63-74.
[16] M. Bayat, M. Rahimi, M. Saleem, A.H. Mohazzab, I. Wudtke, H. Talebi, One-dimensional analysis for magneto-thermo-mechanical response in a functionally graded annular variable-thickness rotating disk, Appl. Math. Model., 38 (2014) 4625-4639.
[17] D. Ting, D. Hong-Liang, Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed, Appl. Math. Model., 40 (2016) 7689-7707.
[18] Hong-Liang Dai, Zhen-Qiu Zheng, Ting Dai, In vestigation on a rotating FGPM circular disk under a coupled hygrothermal field, Appl. Math. Model., 46 (2017) 28-47.
[19] D. Ting, D. Hong-Liang, An analysis of a rotating (FGMEE) circular disk with variable thickness under thermal environment, Appl. Math. Model., 45 (2017) 900-924.
[20] R. Szilard, Theories and applications of plate analysis: Classical, Numerical and Engineering Methods, John Wiley & Sons, Inc; 2004.
[21] S. Chakraverty, Vibration of plates, New York: CRC Press; Taylor & Francis group; 2009.
[22] S.S. Rao, Vibration of continuous systems, John Wiley & Sons, Inc; 2007.
[23] J.N. Reddy, C.M. Wang, S. Kitipornchai, Axisymmetric bending of functionally graded circular and annular plate, Eur. J. Mech. A/Solids 18 (1999) 185-199.
[24] A.M. Wazwaz, Partial differential equations and solitary waves theory, Higher education Press, 2009.
[25] C.F. Gerald, P.O. Wheatley. Applied numerical analysis. 6th ed. California: Addison-Wesley; 2002.
[26] User’s Manual of ANSYS 16.2, ANSYS Inc.; 2015.