[1] R. Seifi, Stress intensity factors for internal surface cracks in autofrettaged functionally graded thick cylinders using weight function method, Theor. Appl. Fract. Mech., 75 (2015) 113-123.
[2] I. Eshraghi, N. Soltani, Stress intensity factor calculation for internal circumferential cracks functionally graded cylinders using the weight
function approach, Eng. Fract. Mech., 134 (2015) 1-19.
[3] A. Shaghaghi-Moghaddam, M. Alfano, M. Ghajar, Determining the mixed mode stress intensity factors of surface cracks in functionally graded hollow cylinders, Mater. Des., 43 (2013) 475-484.
[4] A.M. Afsar, M. Anisuzzaman, Stress intensity factors of two diametrically opposed edge cracks in a thick-walled functionally graded material cylinder, Eng. Fract. Mech., 74 (2007) 1617-1636.
[5] Y. Ootao, R. Kawamura, Y. Tanigawa, R. Imamura, Optimization of material composition of nonhomogeneous hollow sphere for thermal stress relaxation making use of neural network, Comput. Meth. Appl. Mech. Eng., 180 (1999) 185-201.
[6] Y. Ootao, R. Kawamura, Y. Tanigawa, R. Imamura, Optimization of material composition of nonhomogeneous hollow circular cylinder for thermal stress relaxation making use of neural network, J. Thermal. Stress., 22 (1999) 1-22.
[7] A.R. Saidi, S.R. Atashipour, E. Jomehzadeh, Exact elasticity solutions for thick- walled FG spherical pressure vessels with linearly and exponentially varying properties, Int. J. Eng., Transactions A: Basics, 22(4) (2009) 405-416.
[8] M.H. Heydari, N. Choupani, A new comparative method to evaluate the fracture properties of laminated composite, Int. J. Eng., Transactions C: Aspects, 27(6) 991-1004.
[9] A.R. EL-Desouky, M.S. EL-Wazery, Mixed mode crack propagation of zirconia/nickel functionally graded materials, Int. J. Eng.,Transactions B:
Application, 26(8) (2013) 885-894.
[10] C.H. Zhang, M. Cui, J.Wang, X.W. Gao, J. Sladek, V. Sladek, 3D crack analysis in functionally graded materials, Eng. Fract. Mech., 78 (2011) 585-604.
[11] J.L. Wearing, S.Y. Ahmadi-Brooghani, the evaluation of stress intensity factors in plate bending problems using the dual boundary element method, Eng. Anal. Bound. Element., 23 (1999) 3-19.
[12] J.P. Pereira, C.A. Duarte, Extraction of stress intensity factors from generalized finite element solutions, Engin. Anal. Bound. Element., 29 (2005) 397-413.
[13] J. Purbolaksono, A.A. Ali, A. Khinani, A.Z. Rashid, Evaluation of stress intensity factors for multiple surface cracks in bi-material tubes, Eng. Anal. Bound. Element., 33(11) (2009) 1339-1343.
[14] A. Barroso, E. Graciani, V. Mantic, F. Paris, A least squares procedure for the evaluation of multiple generalized stress intensity factors at 2D multimaterial corners by BEM, Eng. Anal. Bound. Element., 36 (2012) 458-470.
[15] I.A. Alatawi, J. Trevelyan, A direct evaluation of stress intensity factors using the Extended Dual Boundary Element Method, Eng. Anal. Bound. Element., 52 (2015) 56-63.
[16] N. Tutuncu, M. Ozturk, Exact Solution for stresses in functionally graded pressure vessels, Composites, part B, 32 (2001) 683-686.
[17] C.O. Horgan, A.M. Chan, The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elasticity, J. Elast., 55 (1999) 43-59.
[18] M. Jabbari, S. Sohrabpour, M.R. Eslami, Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads, Int. J. Pres. Ves. Pip., 79 (2002) 493-497.
[19] A. Ghasemi, A. Kazemian, M. Moradi, Analytical and numerical investigation of FGM pressure vessel reinforced by laminated composite materials, J. Sol. Mech., 6(1) (2014) 43-53.
[20] Y. Chen, X. Lin, Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials, Comput. Mater. Sci., 44(2) (2008) 581-587.
[21] K. Abrinia H. Naee, F. Sadeghi, F. Djavanroodi, New analysis for the FGM thick cylinders under combined pressure and temperature loading, American J. Appl. Sci., 5(7) (2008) 852-859.
[22] M.H. Aliabad, The Boundary Element Method: Applications in solids and structures, 2, John Wiley & Sons, (2002).
[23] X.W. Gao, T.G. Davies, Boundary Element Programming in Mechanics, Cambridge University Press, (2002).
[24] C.A. Brebbia, J. Dominguez, Boundary Elements an Introductory Course, McGraw Hill, New York, NY, (1989).
[25] X.W. Gao, The radial integration method for evaluation of domain integrals with boundary-only discretization, Eng. Anal. Bound. Element., 26 (2002) 905-916.
[26] X.W. Gao, A boundary element method without internal cells for two-dimensional and three dimensional elastoplastic problems, J. Appl. Mech., 69 (2002) 154-60.
[27] J.W. Eischen, Fracture of nonhomogeneous materials, Int. J. Fract., 34 (1987) 3-22.
[28] C. Guozhong, Z. Kangda, W.U. Dongdi, Stress intensity factors for internal semi- elliptical surface cracks in pressurized thick-walled cylinders using the hybrid boundary element method, Eng. Fract. Mech., 52 (1995) 1055-1064.
[29] M.J. McNary, Implementation of the extended finite element method (XFEM) in the ABAQUS software package, MSc. Thesis in mechanical engineering, Georgia Institute of Technology, (2009).