[1] F.A. McClintock, A criterion for ductile fracture by the growth of holes, J. App. Mech., 35 (1968) 363-371.
[2] J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids., 17 (1969) 201-217.
[3] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part 1: Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99(1) (1977) 2-15.
[4] V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., 17(4) (1981) 389-407.
[5] V. Tvergaard, A. Needleman, Analysis of the cupcone fracture in a round tensile bar, Acta. Metall., 32(1) (1984) 157-169.
[6] L. Xue, Constitutive modeling of void shearing effect in ductile fracture of porous materials, Eng. Fract. Mech., 75 (2008) 3343-3366.
[7] K. Nahshon, J.W. Hutchinson, Modification of the Gurson model for shear, Euro. J. Mech. A/Solids., 27 (2008) 1-17.
[8] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci., 46(81) (2004) 81- 98.
[9] N. Bonora, D. Gentile, A. Pirondi, G. Newaz, Ductile damage evolution under triaxial state of stress: theory and experiments, Int. J. Plast., 21 (2005) 981-1007.
[10] G. Mirone, Role of stress triaxiality in elastoplastic characterization and ductile failure prediction, Eng. Fract. Mech., 74 (2007) 1203-1221.
[11] I. Barsoum, J. Faleskog, Rupture mechanisms in combined tension and shear experiments, Int. J. Solids Struct., 44 (2007a) 1768-1786.
[12] I. Barsoum, J. Faleskog, Rupture in combined tension and shear: micromechanics, Int. J. Solids Struct., 44 (2007b) 5481-5498.
[13] M. Brunig, O. Chyra, D. Albrecht, L. Driemeier, M. Alves, A ductile damage criterion at various stress triaxialities, Int. J. Plast., 24 (2008) 1731-1755.
[14] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast., 24 (2008) 1071-1096.
[15] L. Driemeier, M. Brnig, G. Micheli, M. Alves, Experiments on stress-triaxiality dependence of material behavior of aluminum alloys, Mech. Mater., 42 (2) (2010) 207-217.
[16] A.S. Khan, H. Liu, A new approach for ductile fracture prediction on Al 2024-T351 alloy. Int. J. Plast., 35 (2012) 1-12.
[17] L. Malcher, F.M.P. Andrade, J.M.A., C´esar de S´a, An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality, Int. J. Plast., 30-31(0) (2011) 81-115.
[18] J. Lemaitre, A continuous damage mechanics model for ductile fracture, ASME J. Eng. Mater. Technol., 107 (1985) 83-89.
[19] Z. Voyiadjis, S.H. Hoseini, G.H. Farrahi, Effects of stress invariants and reverse loading on ductile fracture initiation, Int. J. Solids. Struct., 49(13) (2012) 1541-1556.
[20] Y. Bai, T. Wierzbicki, A comparative study of three groups of ductile fracture loci in the 3D space, Eng. Fract. Mech., 135 (2015) 147-167.
[21] G. Mirone, R. Barbagallo, D. Corallo, A new yield criteria including the effect of lode angle and stress triaxiality, Procedia. Struc. Integ., 2 (2016) 3684-3696.
[22] M. Ying-Song, S. Dong-Zhi, A. Florenc, Z. Ke-Shi, Influences of initial porosity, stress triaxiality and Lode parameter on plastic deformation and ductile fracture, Acta Mechanica Solida Sinica, 30(5) (2017) 493-506.
[23] C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Tech., 102 (1980) 249-256.
[24] Y. Bao, T. Wierzbicki, A comparative study on various ductile crack formationcriteria, J. Eng. Mater. Tech. Trans. ASME., 126 (2004) 314-324.
[25] R. Narasimhan, A.J. Rosakis, B. Moran, A threedimensional investigation of fracture initiation by ductile failure mechanisms in a 4340 steel, Int. J. Fract., 56 (1992) 1-24.