Ductile Fracture Analysis of High-strength Steel Bars Using Micromechanical GTN Model

Document Type: Original Article


Mechanical Engineering Department, Urmia University of Technology, Urmia, Iran.


Recent studies on the mechanics of materials have shown that the ductile fracture is significantly affected by the stress invariants among progressive plastic deformation. In this paper the micro-mechanical Gurson-TvergaardNeedleman (GTN) model is utilized to investigate the fracture behavior of high-strength steel AISI 4340 under various stress triaxialities. Experimental tensile tests were conducted on the smooth and notched round-bar specimens to evaluate the effect of the stress triaxiality on the fracture initiation. Subsequently, finite element (FE) simulations were implemented using Abaqus/Explicit via the user subroutine VUMAT. The comparison between the simulations and experimental results indicate the best accuracy of the GTN micromechanical model to appraise the ductile fracture initiation. Furthermore, the results demonstrate the significant effect of the stress triaxiality value on the start of the ductile rupture.


[1] F.A. McClintock, A criterion for ductile fracture by the growth of holes, J. App. Mech., 35 (1968) 363-371.
[2] J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids., 17 (1969) 201-217.
[3] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part 1: Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99(1) (1977) 2-15.
[4] V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., 17(4) (1981) 389-407.
[5] V. Tvergaard, A. Needleman, Analysis of the cupcone fracture in a round tensile bar, Acta. Metall., 32(1) (1984) 157-169.
[6] L. Xue, Constitutive modeling of void shearing effect in ductile fracture of porous materials, Eng. Fract. Mech., 75 (2008) 3343-3366.
[7] K. Nahshon, J.W. Hutchinson, Modification of the Gurson model for shear, Euro. J. Mech. A/Solids., 27 (2008) 1-17.
[8] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci., 46(81) (2004) 81- 98.
[9] N. Bonora, D. Gentile, A. Pirondi, G. Newaz, Ductile damage evolution under triaxial state of stress: theory and experiments, Int. J. Plast., 21 (2005) 981-1007.
[10] G. Mirone, Role of stress triaxiality in elastoplastic characterization and ductile failure prediction, Eng. Fract. Mech., 74 (2007) 1203-1221.
[11] I. Barsoum, J. Faleskog, Rupture mechanisms in combined tension and shear experiments, Int. J. Solids Struct., 44 (2007a) 1768-1786.
[12] I. Barsoum, J. Faleskog, Rupture in combined tension and shear: micromechanics, Int. J. Solids Struct., 44 (2007b) 5481-5498.
[13] M. Brunig, O. Chyra, D. Albrecht, L. Driemeier, M. Alves, A ductile damage criterion at various stress triaxialities, Int. J. Plast., 24 (2008) 1731-1755.
[14] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast., 24 (2008) 1071-1096.
[15] L. Driemeier, M. Brnig, G. Micheli, M. Alves, Experiments on stress-triaxiality dependence of material behavior of aluminum alloys, Mech. Mater., 42 (2) (2010) 207-217.
[16] A.S. Khan, H. Liu, A new approach for ductile fracture prediction on Al 2024-T351 alloy. Int. J. Plast., 35 (2012) 1-12.
[17] L. Malcher, F.M.P. Andrade, J.M.A., C´esar de S´a, An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality, Int. J. Plast., 30-31(0) (2011) 81-115.
[18] J. Lemaitre, A continuous damage mechanics model for ductile fracture, ASME J. Eng. Mater. Technol., 107 (1985) 83-89.
[19] Z. Voyiadjis, S.H. Hoseini, G.H. Farrahi, Effects of stress invariants and reverse loading on ductile fracture initiation, Int. J. Solids. Struct., 49(13) (2012) 1541-1556.
[20] Y. Bai, T. Wierzbicki, A comparative study of three groups of ductile fracture loci in the 3D space, Eng. Fract. Mech., 135 (2015) 147-167.
[21] G. Mirone, R. Barbagallo, D. Corallo, A new yield criteria including the effect of lode angle and stress triaxiality, Procedia. Struc. Integ., 2 (2016) 3684-3696.
[22] M. Ying-Song, S. Dong-Zhi, A. Florenc, Z. Ke-Shi, Influences of initial porosity, stress triaxiality and Lode parameter on plastic deformation and ductile fracture, Acta Mechanica Solida Sinica, 30(5) (2017) 493-506.
[23] C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Tech., 102 (1980) 249-256.
[24] Y. Bao, T. Wierzbicki, A comparative study on various ductile crack formationcriteria, J. Eng. Mater. Tech. Trans. ASME., 126 (2004) 314-324.
[25] R. Narasimhan, A.J. Rosakis, B. Moran, A threedimensional investigation of fracture initiation by ductile failure mechanisms in a 4340 steel, Int. J. Fract., 56 (1992) 1-24.