[1] P. Paris, F. Erdogan, A critical analysis of crack propagation laws. J. Basic. Eng., 85(4) (1963) 528-533.
[2] S.K. Paul, Numerical models of plastic zones and associated deformations for a stationary crack in a C (T) specimen loaded at different R-ratios, Theo, Appl. Frac. Mech., 84 (2016) 183-191.
[3] S. Mishra, B. Parida, A study of crack-tip plastic zone by elastoplastic finite element analysis. Eng. Frac. Mech., 22(6) (1985) 951-956.
[4] Y. Iino, Fatigue crack propagation work coefficienta material constant giving degree of resistance to fatigue crack growth, Eng. Frac. Mech., 12(2) (1979) 279-299.
[5] R. McClung, Crack closure and plastic zone sizes in fatigue, Fatig. Frac. Eng. Mat. Struct., 14(4) (1991) 455-468.
[6] G.R. Irwin, Plastic zone near a crack and fracture toughness, Proceedings, 7th sagamore conference, IV (1960) 63-78.
[7] D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Sol., 8(2) (1960) 100-104.
[8] C. Jingjie, H. Yi, D. Leilei, L. Yugang, A new method for cyclic crack-tip plastic zone size determination under cyclic tensile load, Eng. Frac. Mech., 126 (2014) 141-154.
[9] B.O. Chikh, A. Imad, M. Benguediab, Influence of the cyclic plastic zone size on the propagation of the fatigue crack in case of 12NC6 steel, Comput. Mat. Sc., 43(4) (2008) 1010-1017.
[10] S. Kwun, M. Fine, Dependence of cyclic plastic work of fatigue crack propagation on K in MA87 A1 P/M alloy, Scripta Metallurgica, 14(1) (1980) 155-158.
[11] J. Rice, Mechanics of crack tip deformation and extension by fatigue, in Fatigue crack propagation, ASTM International, (1967).
[12] R.H. Hertzberg, R.P. Vinci,J.L. Hertzberg, Deformation and fracture mechanics of engineering materials, 5 ed. John Wiley and Sons, (2012).
[13] R. Seifi, R. Bahrami, Numerical modeling the effects of overloading and underloading in fatigue crack growth, Eng. Fail. Anal., 17(6) (2010) 1475-1482.
[14] Y. Jiang, J. Zhang, Benchmark experiments and characteristic cyclic plasticity deformation. Int. J. Plast., 24(9) (2008) 1481-1515.
[15] S.K. Paul, S. Sivaprasad, S. Dhar, M. Tarafder, S. Tarafder, Simulation of cyclic plastic deformation response in SA333 CMn steel by a kinematic hardening mode, Comput. Mat. Sci., 48(3) (2010) 662-671.
[16] S.K. Paul, S. Tarafder, Cyclic plastic deformation response at fatigue crack tips, Int. J. Press. Ves. Pip., 101 (2013) 81-90.
[17] J.L. Chaboche, Time-independent constitutive theories for cyclic plasticity, Int. J. Plast., 2(2) (1986) 149-188.
[18] C.O. Frederick, P. Armstrong, A mathematical representation of the multiaxial Bauschinger effect. Mater. High. Temp., 24(1) (2007) 1-26.
[19] N. Ohno, J.D. Wang, Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior, Int. J. Plast., 9(3) (1993) 375-390.
[20] W. Prager, Recent developments in the mathematical theory of plasticity, J. Appl. Physic., 20(3) (1949) 235-241.
[21] S. Bari, T. Hassan, Anatomy of coupled constitutive models for ratcheting simulation, Int. J. Plast., 16(3-4) (2000) 381-409.
[22] E606/E606M-12, Standard Test Method for Strain-Controlled Fatigue Testing, ASTM International, West Conshohocken (PA USA): Book of Standards, (2012).
[23] E. Gdoutos, Solid mechanics and its applicationsfracture mechanics, Springer, The Netherlands, (2005).
[24] ASTM, E647-08, Standard test method for measurement of fatigue crack growth rates, ASTM International: West Conshohocken, PA, (2008).