Heat Production in a Simply Supported Multilayer Elliptic Annulus Composite Plate and Its Associated Thermal Stresses

Document Type: Original Article

Authors

1 Mathematics Department, Priyadarshini J. L. College of Engg., Nagpur, India.

2 Sushilabai Bharti Science College, Arni, Yavatmal, India.

3 Mathematics Department, M.G. College, Armori, Gadchiroli, India.

Abstract

This paper is concerned with the theoretical treatment of thermoelastic problem in multilayer elliptical composite plate and the generation of heat in the body as well as at the interfaces with imperfect thermal contact under arbitrary initial temperature distribution. In order to obtain a closed-form solution of transient heat conduction problem, an alternative approach using a new Sturm-Liouville integral transform is presented that considers the series expansion using the eigenfunction expansion method for Sturm-Liouville boundary value problem. Any particular case of special interest can be
derived from assigning suitable values to the parameters and functions of the temperature field and its associated  stresses. As a particular case, the quandary on the heat conduction and its stresses on a two-layered elliptical plate were solved.

Keywords


[1] N.Y. Olc¸er, A General unsteady heat flow problem in a finite composite hollow circular cylinder under boundary conditions of second kind, Nuclear Engineering and Design., 7 (1968) 97-112.
[2] P.C. Wankhede, B.R. Bhonsale, Transient heat conduction in composite plates, cylinders or spheres, Proc., National Academy of Science, 52(A) (1982) 245-256.
[3] M.N. Ozisik, Boundary value problems of heat conduction, Dover publication, New York, (1989).
[4] J. Malzbender, Mechanical and thermal stresses in multilayered materials, J. Appl. Phys., 95 (2004) 1780-1782.
[5] A.L. Kalamkarov, B.A. Kudryavtsev, O.B. Rudakova, Heat conduction in a multilayer composite wedge, J. Eng. Phys. Thermophysic., 64(4) (1993) 396-400.
[6] X. Lu, P. Tervola, M. Viljanen, An efficient analytical solution to transient heat conduction in a onedimensional hollow composite cylinder, J. Phys. A: Math. Gen., 38 (2005) 10145-55.
[7] M. Norouzi, A.A. Delouei, M. Seilsepour, A general exact solution for heat conduction in multilayer spherical composite laminates, Compos. Struct., 106 (2013) 288-295.
[8] S. Singh, Analytical solution of time-dependent multilayer heat conduction problems for a nuclear application, Proceedings of the 1st International Nuclear and Renewable Energy Conference, Amman, Jordan, March, 21-24 (2010) 1-6.
[9] M.H. Kayhani, M. Norouzi, A.A. Delouei, A general analytical solution for heat conduction in cylindrical multilayer composite laminates, Int. J. Thermal Sci., 52 (2012) 73-82.
[10] N. Dalir, S.S. Nourazar, Analytical Solution of the Problem on the Three-Dimensional Transient Heat Conduction in a Multilayer Cylinder, J. Eng. Phys. Thermophysic., 87(1) (2014) 89-97.
[11] N. Wange, M.N. Gaikwad, Heat conduction in composite regions of analytical solution of boundary value problems with arbitrary convection boundary conditions, Int. J. Comp. Eng. Manag., 17(3) (2014) 14-18.
[12] D. Assouane, I. Aslib, J. Lahjomri, A. Oubarra, A general semi-analytical solution for heat conduction in cylindrical multilayer composite laminates, 12th Congr`es de M´ecanique, 21-24 April, Casablanca, Morocco, (2015) 1-3.
[13] E.H. Mansfield, Analysis of unbalanced multilayered elliptical plates under linearly varying pressure, Int. J. Mech. Sci., 32(5) (1990) 417-22.
[14] V. Vodiˇcka, Steady temperature in a composite elliptic cylinder, J. Phys. Soc. Jpn., 16 (1961) 1630-1636.
[15] A.T. Vasilenko, G.P. Urusova, Stress state of freely supported multilayered elliptical plates of anisotropic materials, Mech. Compos. Mater., 33 (1997) 349-355.
[16] A.T. Vasilenko, Determination of the temperature and mechanical fields in anisotropic elliptic plates, J. Math. Sci., 88(3) (1998) 338-341.
[17] B.A. Boley, J.H. Weiner, Theory of thermal stresses, John Wiley and Sons, Inc., New York, (1960).
[18] N.W. McLachlan, Theory and application of mathieu functions, Oxford University Press, Oxford, (1947).