[1] N.Y. Olc¸er, A General unsteady heat flow problem in a finite composite hollow circular cylinder under boundary conditions of second kind, Nuclear Engineering and Design., 7 (1968) 97-112.
[2] P.C. Wankhede, B.R. Bhonsale, Transient heat conduction in composite plates, cylinders or spheres, Proc., National Academy of Science, 52(A) (1982) 245-256.
[3] M.N. Ozisik, Boundary value problems of heat conduction, Dover publication, New York, (1989).
[4] J. Malzbender, Mechanical and thermal stresses in multilayered materials, J. Appl. Phys., 95 (2004) 1780-1782.
[5] A.L. Kalamkarov, B.A. Kudryavtsev, O.B. Rudakova, Heat conduction in a multilayer composite wedge, J. Eng. Phys. Thermophysic., 64(4) (1993) 396-400.
[6] X. Lu, P. Tervola, M. Viljanen, An efficient analytical solution to transient heat conduction in a onedimensional hollow composite cylinder, J. Phys. A: Math. Gen., 38 (2005) 10145-55.
[7] M. Norouzi, A.A. Delouei, M. Seilsepour, A general exact solution for heat conduction in multilayer spherical composite laminates, Compos. Struct., 106 (2013) 288-295.
[8] S. Singh, Analytical solution of time-dependent multilayer heat conduction problems for a nuclear application, Proceedings of the 1st International Nuclear and Renewable Energy Conference, Amman, Jordan, March, 21-24 (2010) 1-6.
[9] M.H. Kayhani, M. Norouzi, A.A. Delouei, A general analytical solution for heat conduction in cylindrical multilayer composite laminates, Int. J. Thermal Sci., 52 (2012) 73-82.
[10] N. Dalir, S.S. Nourazar, Analytical Solution of the Problem on the Three-Dimensional Transient Heat Conduction in a Multilayer Cylinder, J. Eng. Phys. Thermophysic., 87(1) (2014) 89-97.
[11] N. Wange, M.N. Gaikwad, Heat conduction in composite regions of analytical solution of boundary value problems with arbitrary convection boundary conditions, Int. J. Comp. Eng. Manag., 17(3) (2014) 14-18.
[12] D. Assouane, I. Aslib, J. Lahjomri, A. Oubarra, A general semi-analytical solution for heat conduction in cylindrical multilayer composite laminates, 12th Congr`es de M´ecanique, 21-24 April, Casablanca, Morocco, (2015) 1-3.
[13] E.H. Mansfield, Analysis of unbalanced multilayered elliptical plates under linearly varying pressure, Int. J. Mech. Sci., 32(5) (1990) 417-22.
[14] V. Vodiˇcka, Steady temperature in a composite elliptic cylinder, J. Phys. Soc. Jpn., 16 (1961) 1630-1636.
[15] A.T. Vasilenko, G.P. Urusova, Stress state of freely supported multilayered elliptical plates of anisotropic materials, Mech. Compos. Mater., 33 (1997) 349-355.
[16] A.T. Vasilenko, Determination of the temperature and mechanical fields in anisotropic elliptic plates, J. Math. Sci., 88(3) (1998) 338-341.
[17] B.A. Boley, J.H. Weiner, Theory of thermal stresses, John Wiley and Sons, Inc., New York, (1960).
[18] N.W. McLachlan, Theory and application of mathieu functions, Oxford University Press, Oxford, (1947).