[1] K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki, Shape memory and superelastic alloys: Applications and technologies, Elsevier, (2011).
[2] L. Janke, C. Czaderski, M. Motavalli, J. Ruth, Applications of shape memory alloys in civil engineering structures-overview, limits and new ideas, Mater. Struct., 38(5) (2005) 578-592.
[3] A. Saeedi, M.M. Shokrieh, Effect of shape memory alloy wires on the enhancement of fracture behavior of epoxy polymer, Polym. Test., 64 (2017) 221-228.
[4] S.W. Kim, J.G. Lee, S. An, M. Cho, K.J. Cho, A large-stroke shape memory alloy spring actuator using double-coil configuration, Smart Mater. Struct., 24(9) (2015) 095014.
[5] D. Patil, G. Song, A review of shape memory material’s applications in the offshore oil and gas industry, Smart Mater. Struct., 26(9) (2017) 093002.
[6] P. Zhuang, S. Xue, P. Nie, W. Wang, Experimental and numerical study on hysteretic performance of SMA spring-friction bearings, Earthq. Eng. Eng. Vib., 15(4) (2016) 597-609.
[7] G. Attanasi, F. Auricchio, M. Urbano, Theoretical and experimental investigation on SMA superelastic springs, J. Mater. Eng. Perform., 20(4-5) (2011) 706-711.
[8] M.A. Savi, P.M.C. Pacheco, M.S. Garcia, R.A. Aguiar, L.F.G. de Souza, R.B. Da Hora, Nonlinear geometric influence on the mechanical behavior of shape memory alloy helical springs, Smart Mater. Struct., 24(3) (2015) 035012.
[9] J. Wang, Z. Moumni, W. Zhang, W. Zaki, A thermomechanically coupled finite deformation constitutive model for shape memory alloys based on Hencky strain, Int. J. Eng. Sci., 117 (2017) 51-77.
[10] S.M. An, J. Ryu, M. Cho, K.J. Cho, Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model, Smart Mater. Struct., 21(5) (2012) 055009.
[11] S. Enemark, I.F. Santos, M.A. Savi, Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs, J. Intell. Mater. Syst. Struct., 27(20) (2016) 2721-2743.
[12] M.M. Khan, D.C. Lagoudas, Modeling of shape memory alloy pseudoelastic spring elements using Preisach model for passive vibration isolation, Smart Mater. Struct., 4693 (2002) 336-348.
[13] B. Heidari, M. Kadkhodaei, M. Barati, F. Karimzadeh, Fabrication and modeling of shape memory alloy springs, Smart Mater. Struct., 25(12) (2016) 125003.
[14] F. Jahanbazi, Experimental and Theoretical Study of Superelastic Shape Memory Alloy Coil Springs, Master Thesis, Isfahan University of Technology, (2017).
[15] L.C. Brinson, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. Intell. Mater. Syst. Struct., 4(2) (1993) 229-242.
[16] J.H. Chung, J.S. Heo, J.J. Lee, Implementation strategy for the dual transformation region in the Brinson SMA constitutive model, Smart Mater. Struct., 16(1) (2006) N1-N5.
[17] A.M. Wahl, Mechanical springs, Penton Publishing Company, (1944).
[18] S. Sameallah, M. Kadkhodaei, V. Legrand, L. Saint-Sulpice, S.A. Chirani, Direct numerical determination of stabilized dissipated energy of shape memory alloys under cyclic tensile loadings, J. Intell. Mater. Syst. Struct., 26(16) (2015) 2137-2150.
[19] M. Hesami, L. Pino, L. Saint-Sulpice, V. Legrand, M. Kadkhodaei, S. Arbab Chirani, S. Calloch, Rotary bending fatigue analysis of shape memory alloys, J. Intell. Mater. Syst. Struct., 29(6) (2018) 1183-1195.