Effect of Interlaminar Weak Bonding and Constant Magnetic Field on the Hygrothermal Stresses of a FG Hybrid Cylindrical Shell Using DQM

Document Type: Original Article


Mechanical Engineering Department, University of Qom, Qom, Iran.


In the present article, the influences of interlaminar bonding imperfection and constant magnetic field, as well as hygrothermal environmental conditions, on the stresses and displacements of a cylindrical shell with surface bounded sensor and actuator are investigated. The multiphysics analysis was carried out to explore the effects of moisture, temperature, electrical and mechanical loadings as well as magnetic field. The shell was simply supported and could be rested on an elastic foundation. The material properties of the shell and piezoelectric sensor and actuator were assumed to be functionally graded in the radial direction according to power-law function. Using the Fourier  series expansion method through the longitudinal direction and the differential quadrature method (DQM) across the radial direction, governing differential equations were solved. The validity of the present work was verified by comparisons with other published works. Numerical results are presented to illuminate the effects of aspect ratio of shell and magnetic field on the responses of the hybrid shell.


[1] A.S. De Paula, D.J. Inman, M.A. Savi, Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation, Mech. Sys. Signal Proc., 54-55 (2015) 405-416.
[2] G.L.C.M. Abreu, G.P.D. Melo, J.V. Lopes, M.J. Brennan, Active modal damping control of a smart truss structure using a self-organizing fuzzy controller, J. Braz. Soc. Mech. Sci. Eng., 37(2) (2015) 441-450.
[3] K. Nguyen-Quangad, H. Dang-Trungab, V. HoHuu, H. Luong-Van, T. Nguyen-Thoi, Analysis and control of FGM plates integrated with piezoelectric sensors and actuators using cell-based smoothed discrete shear gap method (CS-DSG3), Compos. Struct., 165 (2017) 115-129.
[4] M. Saadatfar, S.A. Razavi, Piezoelectric hollow cylinder with thermal gradient, J. Mech. Sci. Tech., 23(1) (2009) 47-55.
[5] M. Saadatfar, A. Rastgoo, Stress in piezoelectric hollow sphere with thermal gradient, J. Mech. Sci. Tech., 22(8) (2008) 1460-1467.
[6] A.M. Zenkour, M.N.M. Allam, A.F. Radwan, Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations, Arch. Civil Mech. Eng., 14 (2014) 144-159.
[7] W. Smittakorn, P.R. Heyliger, An adaptive wood composite: Theory, Wood. Fiber. Sci., 33(4) (2001) 595-608.
[8] M. Saadatfar, M. Aghaie-Khafri, Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation, Smart. Mater. Struct., 23(3) (2014) 035004.
[9] A.M. Zenkour, Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations, Compos. Struct., 93(1) (2010) 234-238.
[10] M.S.A. Houari, A. Tounsi, O. Anwar Beg, Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory, Int. J. Mech. Sci., 76 (2013) 102-111.
[11] H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, A. Tounsi, Bending and free vibration analysisof functionally graded plates using a simple shear deformation theory and the concept the neutral surface position, J. Braz. Soc. Mech. Sci., 38(1) (2018) 265-275.
[12] A. Bakhshizadeh, M. Zamani Nejad, M. Davoudi Kashkoli, Time-dependent hygro-thermal creep analysis of pressurized fgm rotating thick cylindrical shells subjected to uniform magnetic field, J. Solid. Mech., 9(3) (2017) 663-679.
[13] M. Sobhy, M.S. Alotebi, Transient hygrothermal analysis of fg sandwich plates lying on a viscopasternak foundation via a simple and accurate plate theory, Arab J. Sci. Eng., 43(10) (2018) 5423-5437.
[14] M. Smittakorn, P.R. Heyliger, A discretelayer model of laminated hygrothermopiezoelectric plates, Mech. Compos. Mater. Struct., 7(1) (2000) 79-104.
[15] A.M. Zenkour, Hygrothermoelastic responses of inhomogeneous piezoelectric and exponentially graded cylinders, Int. J. Pres. Ves. Pip., 119 (2014) 8-18.
[16] X. Wang, K. Dong, X.Y. Wang, Hygrothermal effect on dynamic interlaminar stresses in laminated plates with piezoelectric actuators, Compos. Struct., 71(2) (2005) 220-228.
[17] P.K. Mahato, D.K. Maiti, Aeroelastic analysis of smart composite structures in hygro-thermal environment, Compos. Struct., 92(4) (2010) 1027-1038.
[18] A.H. Akbarzadeh, Z.T. Chen, Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field, Compos. Struct., 97 (2013) 317-331.
[19] A.M. Zenkour, Hygrothermal analysis of heterogeneous piezoelectric elastic cylinders, Math. Model. Eng., 2(1) (2016) 1-17.
[20] M. Saadatfar, M. Aghaei-Khafri, Hygrothermal analysis of a rotating smart exponentially graded cylindrical shell with imperfect bonding supported by an elastic foundation, Aerosp. Sci. Technol., 43 (2015) 37-50.
[21] R. Talebitooti, K. Daneshjou, A. Tarkashvand, Study of imperfect bonding effects on sound transmission loss through functionally graded laminated sandwich cylindrical shells, Int. J. Mech. Sci., 133 (2017) 469-483.
[22] M. Saadatfar, M. Aghaei-Khafri, Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder resting on an elastic foundation, Smart. Struct. Sys., 15(6) (2015) 1411-1437.
[23] A. Alibeigloo, Thermoelastic solution for static deformations of functionally graded cylindrical shell bonded to thin piezoelectric layers, Compos. Struct., 93(2) (2011) 961-972.
[24] R. Akbari Alashti, M. Khorsand, Threedimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method, Int. J. Pres. Ves. Pip., 88(5-7) (2011) 167-180.
[25] M. Saadatfar, M. Aghaei-Khafri, On the magnetothermo-elastic behavior of a functionally graded cylindrical shell with pyroelectric layers featuring interlaminar bonding imperfections rested in an elastic foundation, J. Solid. Mech., 7(3) (2015) 344-363.
[26] M. Saadatfar, M. Aghaei-Khafri, Thermoelastic analysis of a rotating functionally graded cylindrical shell with functionally graded sensor and actuator layers on an elastic foundation placed in a constant magnetic field, J. Intell. Mater. Syst. Struct., 27(4) (2016) 512-527.
[27] M. Saadatfar, M. Aghaei-Khafri, On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition, J. Thermal. Stresses., 38(8) (2015) 854-881.
[28] A. Alibeigloo, Thermoelastic analysis of functionally graded carbon nanotube reinforced composite cylindrical panel embedded in piezoelectric sensor and actuator layers, Compos. Part B: Eng., 98 (2016) 225-243.
[29] M. Shaban, A. Alibeigloo, Global bending analysis of corrugated sandwich panels with integrated piezoelectric layers, J. Sandwich. Struc. Mater., (2018) https://doi.org/10.1177/1099636218780172.
[30] M. Saadatfar, Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell with imperfect bonding, Meccanica, 50(8) (2015) 2135-2152.
[31] S.H. Chi, Y.L. Chung, Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis, Int. J. Solid. Struct., 43(13) (2006) 3657-3674.
[32] M. Bhandari, K. Purohit, Analysis of functionally graded material plate under transverse load for various voundary conditions, IOSR J. Mech. Civil Eng., 10 (2014) 46-55.
[33] S. Rohit, P.R. Maiti, Buckling of simply supported FGM plates under uniaxial load, Int. J. Civ. Struct. Eng., 2(4) (2012) 1035-1050.
[34] R. Ansari, M. Darvizeh, Prediction of dynamic behavior of FGM shells under arbitrary boundary conditions, Compos. Struct., 85(4) (2008) 284-292.
[35] W. J. Chang, Transient hygrothermal responses in a solid cylinder by linear theory of coupled heat and moisture, Appl. Math. Model., 18(8) (1994) 467-473.
[36] J.D. Kraus, Electromagnetic, McGraw-Hill, New York, (1984).
[37] G. Paria, Magneto-elasticity and magneto–thermo-elasticity, Adv. Appl. Mech., 10 (1967) 73-112.
[38] A.H. Akbarzadeh, D. Pasini, Multiphysics of multilayered and functionally graded cylinders under prescribed hygrothermomagnetoelectromechanical loading, J. Appl. Mech., 81(4) (2014) 041018-1-041018-15.
[39] C. Shu, Differential quadrature and its application in engineering, Springer Publication, New York, (2000).