[1] A.S. De Paula, D.J. Inman, M.A. Savi, Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation, Mech. Sys. Signal Proc., 54-55 (2015) 405-416.
[2] G.L.C.M. Abreu, G.P.D. Melo, J.V. Lopes, M.J. Brennan, Active modal damping control of a smart truss structure using a self-organizing fuzzy controller, J. Braz. Soc. Mech. Sci. Eng., 37(2) (2015) 441-450.
[3] K. Nguyen-Quangad, H. Dang-Trungab, V. HoHuu, H. Luong-Van, T. Nguyen-Thoi, Analysis and control of FGM plates integrated with piezoelectric sensors and actuators using cell-based smoothed discrete shear gap method (CS-DSG3), Compos. Struct., 165 (2017) 115-129.
[4] M. Saadatfar, S.A. Razavi, Piezoelectric hollow cylinder with thermal gradient, J. Mech. Sci. Tech., 23(1) (2009) 47-55.
[5] M. Saadatfar, A. Rastgoo, Stress in piezoelectric hollow sphere with thermal gradient, J. Mech. Sci. Tech., 22(8) (2008) 1460-1467.
[6] A.M. Zenkour, M.N.M. Allam, A.F. Radwan, Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations, Arch. Civil Mech. Eng., 14 (2014) 144-159.
[7] W. Smittakorn, P.R. Heyliger, An adaptive wood composite: Theory, Wood. Fiber. Sci., 33(4) (2001) 595-608.
[8] M. Saadatfar, M. Aghaie-Khafri, Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation, Smart. Mater. Struct., 23(3) (2014) 035004.
[9] A.M. Zenkour, Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations, Compos. Struct., 93(1) (2010) 234-238.
[10] M.S.A. Houari, A. Tounsi, O. Anwar Beg, Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory, Int. J. Mech. Sci., 76 (2013) 102-111.
[11] H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, A. Tounsi, Bending and free vibration analysisof functionally graded plates using a simple shear deformation theory and the concept the neutral surface position, J. Braz. Soc. Mech. Sci., 38(1) (2018) 265-275.
[12] A. Bakhshizadeh, M. Zamani Nejad, M. Davoudi Kashkoli, Time-dependent hygro-thermal creep analysis of pressurized fgm rotating thick cylindrical shells subjected to uniform magnetic field, J. Solid. Mech., 9(3) (2017) 663-679.
[13] M. Sobhy, M.S. Alotebi, Transient hygrothermal analysis of fg sandwich plates lying on a viscopasternak foundation via a simple and accurate plate theory, Arab J. Sci. Eng., 43(10) (2018) 5423-5437.
[14] M. Smittakorn, P.R. Heyliger, A discretelayer model of laminated hygrothermopiezoelectric plates, Mech. Compos. Mater. Struct., 7(1) (2000) 79-104.
[15] A.M. Zenkour, Hygrothermoelastic responses of inhomogeneous piezoelectric and exponentially graded cylinders, Int. J. Pres. Ves. Pip., 119 (2014) 8-18.
[16] X. Wang, K. Dong, X.Y. Wang, Hygrothermal effect on dynamic interlaminar stresses in laminated plates with piezoelectric actuators, Compos. Struct., 71(2) (2005) 220-228.
[17] P.K. Mahato, D.K. Maiti, Aeroelastic analysis of smart composite structures in hygro-thermal environment, Compos. Struct., 92(4) (2010) 1027-1038.
[18] A.H. Akbarzadeh, Z.T. Chen, Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field, Compos. Struct., 97 (2013) 317-331.
[19] A.M. Zenkour, Hygrothermal analysis of heterogeneous piezoelectric elastic cylinders, Math. Model. Eng., 2(1) (2016) 1-17.
[20] M. Saadatfar, M. Aghaei-Khafri, Hygrothermal analysis of a rotating smart exponentially graded cylindrical shell with imperfect bonding supported by an elastic foundation, Aerosp. Sci. Technol., 43 (2015) 37-50.
[21] R. Talebitooti, K. Daneshjou, A. Tarkashvand, Study of imperfect bonding effects on sound transmission loss through functionally graded laminated sandwich cylindrical shells, Int. J. Mech. Sci., 133 (2017) 469-483.
[22] M. Saadatfar, M. Aghaei-Khafri, Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder resting on an elastic foundation, Smart. Struct. Sys., 15(6) (2015) 1411-1437.
[23] A. Alibeigloo, Thermoelastic solution for static deformations of functionally graded cylindrical shell bonded to thin piezoelectric layers, Compos. Struct., 93(2) (2011) 961-972.
[24] R. Akbari Alashti, M. Khorsand, Threedimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method, Int. J. Pres. Ves. Pip., 88(5-7) (2011) 167-180.
[25] M. Saadatfar, M. Aghaei-Khafri, On the magnetothermo-elastic behavior of a functionally graded cylindrical shell with pyroelectric layers featuring interlaminar bonding imperfections rested in an elastic foundation, J. Solid. Mech., 7(3) (2015) 344-363.
[26] M. Saadatfar, M. Aghaei-Khafri, Thermoelastic analysis of a rotating functionally graded cylindrical shell with functionally graded sensor and actuator layers on an elastic foundation placed in a constant magnetic field, J. Intell. Mater. Syst. Struct., 27(4) (2016) 512-527.
[27] M. Saadatfar, M. Aghaei-Khafri, On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition, J. Thermal. Stresses., 38(8) (2015) 854-881.
[28] A. Alibeigloo, Thermoelastic analysis of functionally graded carbon nanotube reinforced composite cylindrical panel embedded in piezoelectric sensor and actuator layers, Compos. Part B: Eng., 98 (2016) 225-243.
[29] M. Shaban, A. Alibeigloo, Global bending analysis of corrugated sandwich panels with integrated piezoelectric layers, J. Sandwich. Struc. Mater., (2018) https://doi.org/10.1177/1099636218780172.
[30] M. Saadatfar, Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell with imperfect bonding, Meccanica, 50(8) (2015) 2135-2152.
[31] S.H. Chi, Y.L. Chung, Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis, Int. J. Solid. Struct., 43(13) (2006) 3657-3674.
[32] M. Bhandari, K. Purohit, Analysis of functionally graded material plate under transverse load for various voundary conditions, IOSR J. Mech. Civil Eng., 10 (2014) 46-55.
[33] S. Rohit, P.R. Maiti, Buckling of simply supported FGM plates under uniaxial load, Int. J. Civ. Struct. Eng., 2(4) (2012) 1035-1050.
[34] R. Ansari, M. Darvizeh, Prediction of dynamic behavior of FGM shells under arbitrary boundary conditions, Compos. Struct., 85(4) (2008) 284-292.
[35] W. J. Chang, Transient hygrothermal responses in a solid cylinder by linear theory of coupled heat and moisture, Appl. Math. Model., 18(8) (1994) 467-473.
[36] J.D. Kraus, Electromagnetic, McGraw-Hill, New York, (1984).
[37] G. Paria, Magneto-elasticity and magneto–thermo-elasticity, Adv. Appl. Mech., 10 (1967) 73-112.
[38] A.H. Akbarzadeh, D. Pasini, Multiphysics of multilayered and functionally graded cylinders under prescribed hygrothermomagnetoelectromechanical loading, J. Appl. Mech., 81(4) (2014) 041018-1-041018-15.
[39] C. Shu, Differential quadrature and its application in engineering, Springer Publication, New York, (2000).