The Effect of Grading Index on Two-dimensional Stress and Strain Distribution of FG Rotating Cylinder Resting on a Friction Bed Under Thermomechanical Loading

Document Type : Original Research Paper


1 Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Iran.

2 Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Iran. .


This paper presents two-dimensional stress and strain behavior of a FG rotating cylindrical shell subjected to internal-external pressure, surface shear stresses due to friction, an external torque, and constant temperature field. A power law distribution was considered for thermomechanical material properties. First order shear deformation theory (FSDT) was used to define the displacement and deformation field. Energy method and Euler equation were employed to derive constitutive differential equations of the rotating shell. Systems of Six differential equations were achieved. Eigenvalue and eigenvector methods were used to solve these equations. It was found that the material grading index has a significant effect on stresses and strains of a rotating functionally graded material cylindrical shell in radial and longitudinal directions.


[1] M.B. Bever, P.E. Duwez, Gradients in composite materials, J. Mater. Sci. Eng., 10 (1972) 1-8.
[2] M.S. EL-Wazery, A.R. EL-Desouky, A review on functionally graded ceramic-metal materials, Mater. Environ. Sci., 6 (2015) 1369-1376.
[3] Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Springer Publisher, (1999).
[4] A. Alibeigloo, A.M. Kani, M.H. Pashaei, Elasticity solution for the free vibration analysis of functionally graded cylindrical shell bonded to thin piezoelectric layers, Int. J. Press. Vessels Pip., 89 (2012) 98-111.
[5] A. Loghman, M.A. Wahab, Thermoelastoplastic and residual stresses in thick walled cylindrical pressure vessels of strain hardening material, Adv. Eng. Plast. Appl., (1993) 843-850.
[6] C.O. Horgan, A.M. Chan, The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic material, J. Elast. 55(1) (1999) 43-59.
[7] M. Moradi, A. Ghorbanpour, H. Khademizadeh, A. Loghman, Reverse yielding and bauschinger effect on residual stresses in thick-walled cylinders, Pakistan J. Appl. Sci., (2001) 44-51.
[8] N. Tutuncu, M. Ozturk, Exact solution for stresses in functionally graded pressure vessels, Compos. Part B: Eng., 32(8) (2001) 683-686.
[9] A. Ghorbanpour Arani, A. Loghman, H. Khademizadeh, M. Moradi, The bauschinger and hardening effect on residual stresses in thick-walled cylinders of SUS 304, Trans. Can. Soc. Mech. Eng., 26(4) (2003) 361-372.
[10] H. Argeso, A.N. Eraslan, A computational study on functionally graded rotating solid shafts, Int. J. Comput. Methods Eng. Sci. Mech., 8(6) (2007) 391-399.
[11] M. Zamani Nejad, G.H. Rahimi, Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load, Sci. Res. Essay, 4(3) (2009) 131-140.
[12] N. Tutuncu, B. Temel, A novel approach to stress analysis of pressurized FGM cylinders, Disks and Spheres, Compos. Struct., 91(3) (2009) 385-390.
[13] H.R. Eipakchi, Third-order shear deformation theory for stress analysis of a thick conical shell under pressure, J. Mech. Mater. Struct., 5(1) (2010) 1-17.
[14] A. Ozturk, M.U. GUlgec, Elastic-plastic stress analysis in a long functionally graded solid cylinder with fixed ends subjected to uniform heat generation, Int. J. Eng. Sci., 49(10) (2011) 1047-1061.
[15] A.R. Khorshidvand, M. Javadi, Deformation and stresses analysis in FG rotating hollow disk and cylinder subjected to thermal and mechanical load, App. Mech. Mater., 187 (2012) 68-73.
[16] M. Ghannad, G.H. Rahimi, M. Zamani Nejad, Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials, Compos. Part B: Eng., 45(1) (2013) 383-396.
[17] M. Zamani Nejad, A. Rastgoo, A. Hadi, Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique, J. Solid. Mech., 6(4) (2014) 366-377.
[18] P. Fatehi, M. Zamani Nejad, Effects of material gradients on onset of yield in FGM rotating thick cylindrical shell, Int. J. Appl. Mech., 6(4) (2014) 1-20.
[19] M. Zamani Nejad, M. Gharibi, Effect of material gradient on stresses of thick FGM spherical pressure vessels with exponentially-varying properties, J. Adv. Mater. Process., 2(3) (2014) 39-46.
[20] M. Jabbari, M. Zamani Nejad, M. Ghannad, Effect of material gradient on stresses of FGM rotating thick-walled cylindrical pressure vessel with longitudinal variation of properties under nonuniform internal and external pressure, J. Adv. Mater. Process., 4(2) (2016) 3-20.
[21] M. Arefi, R. Koohi Faegh, A. Loghman, The effect of axially variable thermal and mechanical loads on the 2D thermoelastic response of FG cylindrical shell, J. Therm. Stresses., 39(12) (2016) 1539-1559.
[22] R. Singh, L. Sondhi, A. Kumar Thawait, Stress and deformation analysis of rotating cylindrical pressure vessel of functionally graded material modeled by mori-tanaka scheme, J. Exp. Appl. Mech., 8(3)(2017) 1-7.
[23] N. Habibi, S. Asadi, R. Moradikhah, Evaluation of SIF in FGM thick-walled cylindrical vessel, J. Stress Anal., 2(1) (2017) 57-68.
[24] M. Jabbari, M. Zamani Nejad, M. Ghannad, Stress analysis of rotating thick truncated conical shells with variable thickness under mechanical and thermal loads, J. Solid Mech., 9(1) (2017) 100-114.
[25] R. Hetnarski B., M.R. Eslami, Thermal StressesAdvanced Theory and Applications, Springer Publisher, (2009).
[26] T. Myint-U, L. Debnath, Linear Partial Differential Equations for Scientists and Engineers, Birkhauser, Boston Publisher, (2007).