[1] T. Cho, Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method, Construct, Build. Mater., 21(12) (2007) 2031-2040.
[2] Z.Y. Zhou, M. Sun, Stochastic damage model of concrete during freeze-thaw process, Adv. Mater. Res., 450-451 (2012) 102-109.
[3] G. Fagerlund, A Service Life Model for Internal Frost Damage in Concrete, Lund Institute of Technology, Lund Publisher, (2004).
[4] X. Luo, J. Wei, Sharp degradation point of concrete under freezing-thawing cycles, Concrete, 13(11) (2005) 14-16.
[5] J.J. Valenza, G.W. Scherer, A review of salt scaling: I. Phenomenology, Cem. Concr. Res., 37(7) (2007) 1007-1021.
[6] M. Pigeon, R. Pleau, Durability of Concrete in Cold Climates, CRC Press, (1995).
[7] V. Penttala, Surface and internal deterioration of concrete due to saline and non-saline freeze-thaw loads, Cem. Concr. Res., 36(5) (2006) 921-928.
[8] M. Nili, A. Azarioon, S.M. Hosseinian, Novel internal-deterioration model of concrete exposed to freeze-thaw cycles, J. Mater. Civ. Eng., 29(9) (2017) 0401732-1-11.
[9] S.W. Tang, Y. Yao, C. Andrade, Z.J. Li, Recent durability studies on concrete structure, Cem. Concr. Res., 78(Part A) (2015) 143-154.
[10] J. Wawrzenczyk, A. Molendowska, Evaluation of concrete resistance to freeze-thaw based on probabilistic analysis of damage, Procedia Eng., 193 (2017) 35-41.
[11] W. Ashraf, M.A. Glinicki, J. Olek, Statistical analysis and probabilistic design approach for freeze-thaw performance of ordinary Portland cement concrete, J. Mater. Civ. Eng., 30(11), (2018) 04018294-1-10.
[12] S.H. Smith, K.E. Kurtis, I. Tien, Probabilistic evaluation of concrete freeze-thaw design guidance, Mater. Struct., 51: 124(5) (2018) 1-14.
[13] A. Duan, Y. Tian, J.G. Dai, W.L. Jin, A stochastic damage model for evaluating the internal deterioration of concrete due to freeze-thaw action, Mater. Struct., 47(6) (2014) 1025-1039.
[14] G. Bumanis, L. Dembovska, A. Korjakins, D. Bajare, Applicability of freeze-thaw resistance testing methods for high strength concrete at extreme-52.5◦C and standard-18◦C testing conditions, Case Stud. Constr. Mater., 8 (2018) 139-149.
[15] G. Fagerlund, Service life with regard to frost attack- a probabilistic approach, In: Lacasse MA, Vanier DJ (eds) Proceedings of the Eighth International conference on Durability of Building Materials and Components, Vancouver, (1999) 1268-1277.
[16] W. Jun, W. Xing-hao, Z. Xiao-long, A damage model of concrete under freeze-thaw cycles, J. Wuhan Univ. Technol. Mater., 18(3) (2003) 40-42.
[17] M.H. Liu, Y.F. Wang, Damage constitutive model of fly ash concrete under freeze-thaw cycles, J. Mater. Civ. Eng., 24(9) (2012) 1165-1174.
[18] H.S. Shang, Y.P. Song, Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles, Cem. Concr. Res., 36(10) (2006) 1857-1864.
[19] B. Sudret, G. Defaux, M. Pendola, Stochastic evaluation of the damage length in RC beams submitted to corrosion of reinforcing steel, Civ. Eng. Environ. Sys., 24(2) (2007) 165-178.
[20] B. Teply, M. Chroma, K.P. Rovnanik, Durability assessment of concrete structures: reinforcement depassivation due to carbonation, Struct. Infrastruct. Eng., 6(3) (2010) 317-327.
[21] R.E. Melchers, A.T. Beck, Structural Reliability Analysis and Prediction, John Wiley & Sons Publisher, (2018).
[22] C.Q. Li, R.E. Melchers, Time-dependent reliability analysis of corrosion-induced concrete cracking, ACI Struc. J., 102(4) (2005) 543.
[23] F.J. Massey Jr, The Kolmogorov-Smirnov test for goodness of fit, J. Am. Stat. Assoc., 46(253) (1951) 68-78.
[24] ASTM C666, Standard test method for resistance of concrete to rapid freezing and thawing, Annual Book of Standards, Philadelphia, (2003).
[25] ASTM C33, 2014, Standard specification for concrete aggregates, Annual Book of Standards, West Conshohocken, (2014).
[26] ASTM C617, Standard practice for capping cylindrical concrete specimens, Annual Book of Standards, West Conshohocken, (2014).
[27] ASTM C231, Standard test method for air content of freshly mixed concrete by the pressure method, Annual Book of Standards, West Conshohocken, (2014).
[28] ASTM C143, Standard test method for slump of hydraulic cement concrete, Annual Book of Standards, West Conshohocken, (2014).
[29] S.M. Hosseinian, Semi-experimental model for prediction of frost resistance of normal and highperformance concrete, MSc Thesis, Isfahan University of Technology, (2001).
[30] C.Q. Li, Computation of the failure probability of deteriorating structural systems, Compu. Struct., 56(6) (1995) 1073-1079.
[31] P.J. Tikalsky, Monte Carlo simulation of chloride diffusion in concrete exposed to deicing salts, Concrete for Transportation Infrastructure: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 5-7 July (2005).
[32] X.F. Wang, Z.J. Yang, J.R. Yates, A.P. Jivkov, Ch. Zhang, Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores, Constr. Build. Mater., 75 (2015) 35-45.
[33] L.H. Grant, S.A. Mirza, J.G. MacGregor, Monte Carlo study of strength of concrete columns, ACI J. Proc., 75(8) (1978) 348-358.
[34] R.Y. Rubinstein, D.P. Kroese, Simulation and the Monte Carlo Method, John Wiley & Sons Publisher, (2016).
[35] R.E. Melchers, C.Q. Li, W. Lawanwisut, Probabilistic modeling of structural deterioration of reinforced concrete beams under saline environment corrosion, Struct. Saf., 30(5) (2008) 447-460.
[36] ACI Committee 318, Building code requirements for reinforced concrete, ACI 318-14, American Concrete Institute, (2014).
[37] D.C. Montgomery, G.C. Runger, N.F. Hubele, Engineering Statistics, John Wiley & Sons Publisher, (2012).
[38] H.Y. Zhang, The research of frost-resisting durability of concrete, Master’s dissertation, Inner Mongolia University of Science and Technology, Baotou, China (in Chinese) (2009).