Assessing Reliability of Bending of Concrete Beams Exposed to Freeze-thaw Conditions Based on Compressive Stress Limit Reduction

Document Type: Original Article


Department of Civil Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.


For existing reinforced concrete structures exposed to freeze-thaw conditions, there is an increasing engineering concernover their remaining safety. This paper presents a novel experimental-theoretical stochastic model for evaluating the reliability of concrete structures subjected to freeze-thaw conditions based on stress limit reduction. Reliability theory and experimental works provide the basis for the model development. Water cement ratio, air content, and number of freeze-thaw cycles are considered as the model variables. Compressive stress limit reduction in freeze-thaw conditions was treated as a stochastic variable. The effectiveness of the proposed model was evaluated using an example concrete structure element. The paper demonstrates that after, for example, 10 years experiencing FT cycles in a cold city; the reliability of the example concrete beam reduces to 52.5 percent for 10C concrete freezing temperature. It was found that the results of the proposed method are accurate compared to the literature. It was also found that the results of the proposed method are in good agreement with those obtained based on concrete’s non-destructive tests.


[1] T. Cho, Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method, Construct, Build. Mater., 21(12) (2007) 2031-2040.
[2] Z.Y. Zhou, M. Sun, Stochastic damage model of concrete during freeze-thaw process, Adv. Mater. Res., 450-451 (2012) 102-109.
[3] G. Fagerlund, A Service Life Model for Internal Frost Damage in Concrete, Lund Institute of Technology, Lund Publisher, (2004).
[4] X. Luo, J. Wei, Sharp degradation point of concrete under freezing-thawing cycles, Concrete, 13(11) (2005) 14-16.
[5] J.J. Valenza, G.W. Scherer, A review of salt scaling: I. Phenomenology, Cem. Concr. Res., 37(7) (2007) 1007-1021.
[6] M. Pigeon, R. Pleau, Durability of Concrete in Cold Climates, CRC Press, (1995).
[7] V. Penttala, Surface and internal deterioration of concrete due to saline and non-saline freeze-thaw loads, Cem. Concr. Res., 36(5) (2006) 921-928.
[8] M. Nili, A. Azarioon, S.M. Hosseinian, Novel internal-deterioration model of concrete exposed to freeze-thaw cycles, J. Mater. Civ. Eng., 29(9) (2017) 0401732-1-11.
[9] S.W. Tang, Y. Yao, C. Andrade, Z.J. Li, Recent durability studies on concrete structure, Cem. Concr. Res., 78(Part A) (2015) 143-154.
[10] J. Wawrzenczyk, A. Molendowska, Evaluation of concrete resistance to freeze-thaw based on probabilistic analysis of damage, Procedia Eng., 193 (2017) 35-41.
[11] W. Ashraf, M.A. Glinicki, J. Olek, Statistical analysis and probabilistic design approach for freeze-thaw performance of ordinary Portland cement concrete, J. Mater. Civ. Eng., 30(11), (2018) 04018294-1-10.
[12] S.H. Smith, K.E. Kurtis, I. Tien, Probabilistic evaluation of concrete freeze-thaw design guidance, Mater. Struct., 51: 124(5) (2018) 1-14.
[13] A. Duan, Y. Tian, J.G. Dai, W.L. Jin, A stochastic damage model for evaluating the internal deterioration of concrete due to freeze-thaw action, Mater. Struct., 47(6) (2014) 1025-1039.
[14] G. Bumanis, L. Dembovska, A. Korjakins, D. Bajare, Applicability of freeze-thaw resistance testing methods for high strength concrete at extreme-52.5C and standard-18C testing conditions, Case Stud. Constr. Mater., 8 (2018) 139-149.
[15] G. Fagerlund, Service life with regard to frost attack- a probabilistic approach, In: Lacasse MA, Vanier DJ (eds) Proceedings of the Eighth International conference on Durability of Building Materials and Components, Vancouver, (1999) 1268-1277.
[16] W. Jun, W. Xing-hao, Z. Xiao-long, A damage model of concrete under freeze-thaw cycles, J. Wuhan Univ. Technol. Mater., 18(3) (2003) 40-42.
[17] M.H. Liu, Y.F. Wang, Damage constitutive model of fly ash concrete under freeze-thaw cycles, J. Mater. Civ. Eng., 24(9) (2012) 1165-1174.
[18] H.S. Shang, Y.P. Song, Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles, Cem. Concr. Res., 36(10) (2006) 1857-1864.
[19] B. Sudret, G. Defaux, M. Pendola, Stochastic evaluation of the damage length in RC beams submitted to corrosion of reinforcing steel, Civ. Eng. Environ. Sys., 24(2) (2007) 165-178.
[20] B. Teply, M. Chroma, K.P. Rovnanik, Durability assessment of concrete structures: reinforcement depassivation due to carbonation, Struct. Infrastruct. Eng., 6(3) (2010) 317-327.
[21] R.E. Melchers, A.T. Beck, Structural Reliability Analysis and Prediction, John Wiley & Sons Publisher, (2018).
[22] C.Q. Li, R.E. Melchers, Time-dependent reliability analysis of corrosion-induced concrete cracking, ACI Struc. J., 102(4) (2005) 543.
[23] F.J. Massey Jr, The Kolmogorov-Smirnov test for goodness of fit, J. Am. Stat. Assoc., 46(253) (1951) 68-78.
[24] ASTM C666, Standard test method for resistance of concrete to rapid freezing and thawing, Annual Book of Standards, Philadelphia, (2003).
[25] ASTM C33, 2014, Standard specification for concrete aggregates, Annual Book of Standards, West Conshohocken, (2014).
[26] ASTM C617, Standard practice for capping cylindrical concrete specimens, Annual Book of Standards, West Conshohocken, (2014).
[27] ASTM C231, Standard test method for air content of freshly mixed concrete by the pressure method, Annual Book of Standards, West Conshohocken, (2014).
[28] ASTM C143, Standard test method for slump of hydraulic cement concrete, Annual Book of Standards, West Conshohocken, (2014).
[29] S.M. Hosseinian, Semi-experimental model for prediction of frost resistance of normal and highperformance concrete, MSc Thesis, Isfahan University of Technology, (2001).
[30] C.Q. Li, Computation of the failure probability of deteriorating structural systems, Compu. Struct., 56(6) (1995) 1073-1079.
[31] P.J. Tikalsky, Monte Carlo simulation of chloride diffusion in concrete exposed to deicing salts, Concrete for Transportation Infrastructure: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 5-7 July (2005).
[32] X.F. Wang, Z.J. Yang, J.R. Yates, A.P. Jivkov, Ch. Zhang, Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores, Constr. Build. Mater., 75 (2015) 35-45.
[33] L.H. Grant, S.A. Mirza, J.G. MacGregor, Monte Carlo study of strength of concrete columns, ACI J. Proc., 75(8) (1978) 348-358.
[34] R.Y. Rubinstein, D.P. Kroese, Simulation and the Monte Carlo Method, John Wiley & Sons Publisher, (2016).
[35] R.E. Melchers, C.Q. Li, W. Lawanwisut, Probabilistic modeling of structural deterioration of reinforced concrete beams under saline environment corrosion, Struct. Saf., 30(5) (2008) 447-460.
[36] ACI Committee 318, Building code requirements for reinforced concrete, ACI 318-14, American Concrete Institute, (2014).
[37] D.C. Montgomery, G.C. Runger, N.F. Hubele, Engineering Statistics, John Wiley & Sons Publisher, (2012).
[38] H.Y. Zhang, The research of frost-resisting durability of concrete, Master’s dissertation, Inner Mongolia University of Science and Technology, Baotou, China (in Chinese) (2009).