Damage Identification in Large-scale Double-layer Truss Structures Via a Two-stage Approach

Document Type: Original Article


1 Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran

2 Department of Civil Engineering, EITC, University of Manitoba, Winnipeg, Canada


In this study, a two-stage damage identification approach based on modal flexibility differences and whale optimization algorithm (WOA) was applied to localize and quantify damages in large-scale double-layer truss structures. In first stage, damage locating vector (DLV) method using EDS (exponential decreased stress) was employed to find the real damaged elements of structure; then, WOA algorithm was used to determine the severity of suspected damaged elements obtained from the first stage. To evaluate the reliability of the proposed approach, two large-scale double-layer truss structures were studied. Furthermore, to assess the effect of noise on the accuracy of damage detection, the article compares the results of EDS with NCE. Calculation results demonstrate that the combination of DLV method using EDS and WOA algorithm provides an effective tool to carefully determine the location and the severity of structural damages in noisy condition directly. Moreover, the approach determines damages even though there are the low number of used mode shapes and a high number of structural elements.


[1] Y. Gao, B.F. Spencer Jr, D. Bernal, Experimental verification of the flexibility-based damage locating vector method, J. Eng. Mech., 133(10) (2007) 1043-1049.
[2] S.R. Hoseini Vaez, N. Fallah, Damage detection of thin plates using GA-PSO algorithm based on modal data, Arab. J. Sci. Eng., 42(3) (2017) 1251-1263.
[3] C.R. Farrar, K. Worden, An introduction to structural health monitoring. Philosophical Transactions of the Royal Society of London A: Mathematical, Phys. Eng. Sci., 365(1851) (2007) 303-315.
[4] H. Sohn, C.R. Farrar, F.M. Hemez, D.D. Shunk, D.W. Stinemates, B.R. Nadler, J.J. Czarnecki, A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory, USA, (2004).
[5] Y.J. Yan, L. Cheng, Z.Y. Wu, L.H. Yam, Development in vibration-based structural damage detection technique, Mech. Syste. Sig. Process., 21(5) (2007) 2198-2211.
[6] O.S. Salawu, Detection of structural damage through changes in frequency: a review, Eng. Struct., 19(9) (1997) 718-723.
[7] A. Messina, E.J. Williams, T. Contursi, Structural damage detection by a sensitivity and statisticalbased method, J. Sound Vib., 216(5) (1998) 791-808.
[8] A.K. Pandey, M. Biswas, Damage detection in structures using changes in flexibility, J. Sound Vib., 169(1) (1994) 3-17.
[9] S.M. Seyedpoor, A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization, Int. J. Non-Linear Mech., 47(1) (2012) 1-8.
[10] J. Zhao, J.T. DeWolf, Sensitivity study for vibrational parameters used in damage detection, J. Struct. Eng., 125(4) (1999) 410-416.
[11] A. Kaveh, S.R., Hoseini Vaez, P. Hosseini, Enhanced vibrating particles system algorithm for damage identification of truss structures, Scientia Iranica, Trans. Civ. Eng., 26(1) (2019) 246-256.
[12] E.T. Lee, H.C. Eun, Damage detection using measurement response data of beam structure subject to a moving mass, Latin American J. Solids Struct., 12(12) (2015) 2384-2402.
[13] P.S. Sánchez, P.L. Negro, P. García-Fogeda, Vibration-based method for damage detection at welded beams and rods, Latin American J. Solids Struct., 13(13) (2016) 2336-2355.
[14] J. Xiang, Zhong, Y., Chen, X., and He, Z., Crack detection in a shaft by combination of wavelet-based elements and genetic algorithm, Int. J. Solids Struc., 45(17) (2008) 4782-4795.
[15] A. Kaveh, S.R. Hoseini Vaez, P. Hosseini, N. Fallah, Detection of damage in truss structures using Simplified Dolphin Echolocation algorithm based on modal data, Smart Struc. Syst., 18(5) (2016) 983-1004.
[16] S.R. Hoseini Vaez, T. Arefzade, Vibration-based damage detection of concrete gravity dam monolith via wavelet transform, J. VibroEng., 19(1) (2017) 204-213.
[17] N. Fallah, S.R. Hoseini Vaez, H. Fasihi, Damage identification in laminated composite plates using a new multi-step approach, Steel Compos. Struct., 29(1) (2018) 139-149.
[18] N. Fallah, S.R. Hoseini Vaez, A. Mohammadzadeh, Multi-damage identification of largescale truss structures using a two-step approach, J. Build. Eng., 19 (2018) 494-505.
[19] S.R. Hoseini Vaez, N. Fallah, Damage identification of a 2D frame structure using two-stage approach, J. Mech. Sci. Technol., 32(3) (2018) 1125-1133.
[20] O. Begambre, J.E. Laier, A hybrid Particle Swarm Optimization-Simplex algorithm (PSOS) for structural damage identification, Adv. Eng. Software, 40(9) (2009) 883-891.
[21] K. Moslem, R. Nafaspour, Structural damage detection by genetic algorithms, AIAA J., 40(7) (2002) 1395-1401.
[22] H.Y. Guo, Z.L. Li, A two-stage method to identify structural damage sites and extents by using evidence theory and micro-search genetic algorithm, Mec. Syst. Signal Process., 23(3) (2009) 769-782.
[23] D. Bernal, Load vectors for damage localization, J. Eng. Mech., 128(1) (2002) 7-14.
[24] S.M. Seyedpoor, M. Montazer, A damage identification method for truss structures using a flexibility-based damage probability index and differential evolution algorithm, Inverse Prob. Sci. Eng., 24(8) (2016) 1303-1322.
[25] S.M. Seyedpoor, M. Montazer, A two-stage damage detection method for truss structures using a modal residual vector based indicator and differential evolution algorithm, Smart Struct. Syst., 17(2) (2016) 347-361.
[26] T. Vo-Duy, V. Ho-Huu, H. Dang-Trung, T. Nguyen-Thoi, A two-step approach for damage detection in laminated composite structures using modal strain energy method and an improved differential evolution algorithm, Compos. Struct., 147 (2016) 42-53.
[27] M. Mousavi, A.H. Gandomi, A hybrid damage detection method using dynamic-reduction transformation matrix and modal force error, Eng. Struct., 111 (2016) 425-434.
[28] H. Agerskov, Optimum geometry design of doublelayer space trusses, J. Struct. Eng., 112(6) (1986) 1454-1463.
[29] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016) 51-67.
[30] T. Vo-Duy, N. Nguyen-Minh, H. Dang-Trung, A. Tran-Viet, T. Nguyen-Thoi, Damage assessment of laminated composite beam structures using damage locating vector (DLV) method, Front. Struct. Civ. Eng., 9(4) (2015) 457-465.
[31] S.T. Quek, V.A. Tran, X.Y. Hou, W.H. Duan, Structural damage detection using enhanced damage locating vector method with limited wireless sensors, J. Sound Vib., 328(4-5) (2009) 411-427.
[32] J.D. Villalba-Morales, J.E. Laier, Assessing the performance of a differential evolution algorithm in structural damage detection by varying the objective function, Dyna, 81(188) (2014) 106-115.
[33] S.H. Sim, S.A. Jang, B.F. Spencer Jr, J. Song, Reliability-based evaluation of the performance of the damage locating vector method, Probab. Eng. Mech., 23(4) (2008) 489-495.
[34] R. Perera, A. Ruiz, C. Manzano, Performance assessment of multicriteria damage identification genetic algorithms, Comput. Struct., 87(1-2) (2009) 120-127.
[35] S. Gholizadeh, E. Salajegheh, P. Torkzadeh, Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network, J. Sound Vib., 312(1-2) (2008) 316-331.
[36] O. Hasançebi, S. Çarbaş, E. Doğan, F. Erdal, M. Saka, Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures, Comput. Struct., 87(5-6) (2009) 284-302.