Effect of Hygrothermal Environmental Conditions on the Time-dependent Creep Response of Functionally Graded Magneto-electro-elastic Hollow Sphere

Document Type: Original Article

Author

Mechanical Engineering Department, University of Qom, Qom, Iran.

10.22084/jrstan.2019.18157.1080

Abstract

In this paper, hygro-thermo-magneto-electro-elastic creep stress redistribution of a functionally graded magneto-electro-elastic (FGMEE) hollow sphere is examined. It is supposed that all material properties are a power-law function of radius. Temperature and moisture concentration functions are obtained analytically and then, a differential equation with creep strains is obtained using equations of electrostatic, magnetostatic and equilibrium, At first, ignoring the creep strains, a solution for the initial hygro-thermo-magneto-electroelastic stresses at zero time is achieved. Subsequently, creep strains are considered and creep stress rates are obtained. The Prandtl-Reuss equations and Norton’s law are taken for the creep analysis. Finally, time-dependent creep stresses as well as magnetic and potential field redistributions at any time are obtained using an iterative method. Results show that the radial stress, radial displacement, electric potential and magnetic potentials increase as time goes by at a decreasing rate. Also, the grading index and hygrothermal condition have more considerable effect on the radial stress after creep evolution rather than initial case. Thus, their effects must be considered in creep evolution analysis.

Keywords


[1] H.S. Tzou, H.J. Lee, S.M. Arnold, Smart materials, precision sensors/actuators, smart structures, and structronic systems, Mech. Adv. Mater. Struct., 11(4-5) (2004) 367-393.
[2] N. Habibi, S. Asadi, R. Moradikhah, Evaluation of SIF in FGM thick-walled cylindrical vessel, J. Stress Anal., 2(1) (2017) 57-68.
[3] M. Omidi bidgoli, A. Loghman, M. Arefi, The effect of grading index on two-dimensional stress and strain distribution of fg rotating cylinder resting on a friction bed under thermomechanical loading, J. Stress Anal., 3(2) (2019) 75-82.
[4] M. Saadatfar, M. Aghaie-Khafri, Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder resting on an elastic foundation, Smart Struct. Syst., 15(6) (2015) 1411-1437.
[5] M. Saadatfar, M. Aghaie-Khafri, On the magnetothermo-elastic behavior of a FGM cylindrical shell with pyroelectric layers featuring interlaminar bonding imperfections rested in an elastic foundation, J. Solid Mech., 7(3) (2015) 344-363.
[6] M. Saadatfar, M. Aghaie-Khafri, Thermoelastic analysis of a rotating functionally graded cylindrical shell with functionally graded sensor and actuator layers on an elastic foundation placed in a constant magnetic field, J. Intel. Mater. Sys. Struct., 27(4) (2015) 512-527.
[7] H.L. Dai, H.J. Jiang, L. Yang, Time-dependent behaviors of a FGPM hollow sphere under the coupling of multi-fields, Solid State Sci., 14(5) (2012) 587-597.
[8] H.M. Wang, H.J. Ding, Transient responses of a magneto-electro-elastic hollow sphere for fully coupled spherically symmetric problem, Eur. J. Mech. A Solids, 25(6) (2006) 965-980.
[9] H.M. Wang, H.J. Ding, Radial vibration of piezoelectric/magnetostrictive composite hollow sphere, J. Sound Vib., 307(1-2) (2004) 330-348.
[10] Y. Ootao, M. Ishihara, Exact solution of transient thermal stress problem of a multilayered magnetoelectro-thermoelastic hollow sphere, Appl. Math. Model., 36(4) (2012) 1431-1443.
[11] J.Y. Chen, E. Pan, P.R. Heyliger, Static deformation of a spherically anisotropic and multilayered magneto-electro-elastic hollow sphere, Int. J. Solids Struct., 60(60-61) (2015) 66-74.
[12] M. Saadatfar, M. Aghaie-Khafri, Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation, Smart Mater. Struct., 23(3) (2014) 035004.
[13] W. Smittakorn, P.R. Heyliger, A discretelayer model of laminated hygrothermopiezoelectric plates, Mech. Compos. Mater. Struct., 7(1) (2000)79-104.
[14] W. Smittakorn, P.R. Heyliger, An adaptive wood composite: theory, Wood Fiber Sci., 33(4) (2001) 595-608.
[15] S. Raja, P.K. Sinha, G. Prathap, D. Dwarakanthan, Thermally induced vibration control of composite plates and shells with piezoelectric active damping, Smart Mater. Struct., 13(4) (2004) 939-950.
[16] M. Saadatfar, M. Aghaie-Khafri, On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition, J. Therm. Stresses, 38(8) (2015) 854-881.
[17] M. Saadatfar, M. Aghaie-Khafri, Hygrothermal analysis of a rotating smart exponentially graded cylindrical shell with imperfect bonding supported by an elastic foundation, Aerosol Sci. Technol., 43 (2015) 37-50.
[18] M. Saadatfar, Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell with imperfect bonding, Meccanica, 50(8) (2015) 2135-2152.
[19] L.H. You, H. Ou, Steady-state creep analysis of thick-walled spherical pressure vessels with varying creep properties, J. Pressure Vessel Technol., 130(1) (2008) 014501-1-014501-5.
[20] A. Loghman, N. Shokouhi, Creep damage evaluation of thick-walled spheres using a long-term creep constitutive model, J. Mech. Sci. Technol., 23 (2009) 2577-2582.
[21] A. Loghman, A. Ghorbanpour Arani, S.M.A. Aleayoub, Time-dependent creep stress redistribution analysis of thick-walled functionally graded spheres, Mech. Time-Depend Mater. 15(4) (2011) 353-365.
[22] A. Loghman, S.M.A. Aleayoub, M. Hasani Sadi, Time-dependent magnetothermoelastic creep modeling of FGM spheres using method of successive elastic solution, Appl. Math. Model., 36(2) (2012) 836-845.
[23] J. Jafari Fesharaki, A. Loghman, M. Yazdipoor, S. Golabi, Semi-analytical solution of time-dependent thermomechanical creep behavior of FGM hollow spheres, Mech. Time-Depend Mater., 18(1) (2014) 41-53.
[24] A. Ghorbanpour Arani, R. Kolahchi, A.A. Mosallaie Barzoki, A. Loghman, The effect of timedependent creep on electro-thermo-mechanical behaviors of piezoelectric sphere using Mendelson’s method, Europ. J. Mech. A Solids, 37 (2013) 318-328.
[25] M. Jabbari, M.S. Tayebi, Time-dependent electromagneto-thermoelastic stresses of a poro-piezofunctionally graded material hollow sphere, J. Pressure Vessel Technol., 138(5) (2016) 051201-1-051201-12.
[26] A. Loghman, H. Tourang, Non-stationary electrothermo-mechanical creep response and smart deformation control of thick-walled sphere made of polyvinylidene fluoride, J. Braz. Soc. Mech. Sci. Eng.,  8(8) (2016) 2547-2561.
[27] M. Saadatfar, Effect of Interlaminar Weak bonding and constant magnetic field on the hygrothermal stresses of a FG hybrid cylindrical shell using DQM, J. Stress Anal., 3(1) (2018) 93-110.
[28] M.R. Eslami, M.H. Babaei, R. Poultangari, Thermal and mechanical stresses in a functionally graded thick sphere, Int. J. Press. Vessels Pip., 82(7) (2005) 522-527.
[29] M. Saadatfar, Time-dependent creep response of magneto-electro-elastic rotating disc in thermal and humid environmental condition, AUT J. Mech. Eng., (In Press), DOI: 10.22060/AJME.2019.15375.5770.
[30] M. Saadatfar, Analytical solution for the creep problem of a rotating functionally graded magnetoelectro-elastic hollow cylinder in thermal environment, Int. J. Appl. Mech., (In Press), DOI: 101142/S1758825119500534.
[31] M. Saadatfar, Stress redistribution analysis of piezomagnetic rotating thick-walled cylinder with temperature-and moisture-dependent material properties, J. Appl. Comput. Mech., 6(1) (2020) 90-104.
[32] A. Ghorbanpour, S. Golabi, M. Saadatfar, Stress and electric potential fields in piezoelectric smart spheres, J. Mech. Sci. Technol., 20(11) (2006) 1920-1933.
[33] M. Saadatfar, A. Rastgoo, Stress in piezoelectric hollow sphere with thermal gradient, J. Mech. Sci. Technol., 22 (2008) 1460-1467.