Effect of SiC Particles on Fatigue Life of AL-Matrix Composites

Document Type: Original Article


Mechanical Engineering Department, Islamic Azad University, Hamedan Branch, Hamedan, Iran.



In the present study, a micromechanical modeling approach based on volumetric element was considered from a composite consisted of three components: matrix, particle, and particle-matrix intermediate phase. In order to predict the behavior of the damage evolution in the composite, the particle-matrix intermediate phase was modeled based on the cohesive zone model and disruptive elastoplastic behavior was considered for matrix. In order to study the efficiency of the implemented model, at first, modeling processes were conducted using the USERMAT code in finite element ANSYS software, and then the growth of fatigue damage was investigated in the AL composite reinforced with SiC particles. For this purpose, after the study of characterization static constant of cohesive zone model, validation of the static model was approved. S-N curve obtained from experimental results for pure AL were used for  Characterization fatigue constants of the matrix. Comparison of the obtained results from finite element analysis with that of experiment, justifies the capability of the employed model to predict the fatigue life of metal matrix composites reinforced with particles in other conditions and is able to consider the effect of volume fraction in predicting fatigue life while the modelbenefits from the lowest tests for the characterization constants of model.


[1] W.F. Smith, Structure and Properties of Engineering Alloys, Lubbock, TX, USA: McGraw-Hill, (1981).
[2] S. Attar, M. Nagaral, H.N. Reddappa, V. Auradi, A review on particulate reinforced aluminum metal matrix composites, J. Emerging Tech. Innovative Res., 2(2) (2015) 225-229.
[3] A. Shokuhfar, M. Sabzehparvar, F. Kiani, The Science and Engineering of Advanced Materials Smart and Nanostructured Materials ,Tehran, Iran: kntu publication, (2014) (In Persian).
[4] H. Abdollah pours, Metal Matrix Composites, Semnan, Iran: Semnan University Press, (2013) (In Persian).
[5] C. Kaynak, S. Boylu, Effects of SiC particulates on the fatigue behaviour of an Al-Alloy matrix composite, Mater. Des., 27(9) (2006) 776-782.
[6] N. Chawla, K.K. Chawla, Metal Matrix Composites, First Edition: Springer US Publisher, (2006).
[7] N. Chawla, Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Advanced Engineering Materials, 3(6) (2001) 357-370.
[8] N. Chawla, J.E. Allison, Fatigue of Particle Reinforced Materials, In Encyclopedia of Materials: Science and Technology, Second Edition, Elsevier Amesterdam, The Netherland, (2001) 2967-2971.
[9] J.J. Lewandowski, Fracture and Fatigue of Particulate MMCs, In: T.W. Clayne (ed.), Compr. Compos. Mater. Metall. Matrix. Compos., Elsevier, 3 (2000) 151-187.
[10] J. LLorca, Fatigue of particle and whisker reinforced metal matrix composites, Prog. Mater. Sci., 47(3) (2002) 283-353.
[11] V.V. Ganesh, N. Chawla, Effect of reinforcementparticle-orientation anisotropy on the tensile and fatigue behavior of metal-matrix composites, Metall. Mater. Trans. A, 35(1) (2004) 53-61.
[12] J. Nemati, S. Sulaiman, A. Khalkhali, Improvement in mechanical properties of titanium deformed by ECAE process, J. Stress Anal., 1(1) (2016) 55-64.
[13] A. Madadi, H. Eskandari-Naddaf, M. NematiNejad, Evaluation of bond strength of reinforcement in concrete containing fibers, micro-silica and nano-silica, J. Stress Anal., 3(1) (2018) 11-19.
[14] G.H. Majzoobi, K. Rahmani, A. Atrian, An experimental investigation into wear resistance of MgSiC nanocomposite produced at high rate of compaction, J. Stress Anal., 3(1) (2018) 35-45.
[15] C. Balzani, W. Wagner, An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates, Eng. Fract. Mech., 75(9) (2008) 2597-2615.
[16] P.P. Camanho, C.G. Davila, M.F. De Moura, Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials, J. Compos. Mater., 37(16) (2003) 1415-1438.
[17] S. Sridharan, Delamination Behavior of Composites, Boca Raton, Woodhead Publisher, USA: CRC Press, (2008).
[18] L. Ye, Role of matrix resin in delamination onset and growth in composite laminates, Compos. Sci. Technol., 33(4) (1988) 257-277.
[19] M.L. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixedmode bending apparatus, Compos. Sci. Technol., 56(4) (1996) 439-449.
[20] Q. Meng, Z. Wang, Prediction of interfacial strength and failure mechanisms in particlereinforced metal-matrix composites based on a micromechanical model, Eng. Fract. Mech., 142 (2015) 170-183.
[21] D. Salimi-Majd, Investigation of delamination in laminated composites under fatigue loading using the cohesive interface element, MSc Thesis, School of mechanical engineering, Iran University of Science and Technology, Tehran, (2013) (In Persian).
[22] P. Robinson, U. Galvanetto, D. Tumino, G. Bellucci, D. Violeau, Numerical simulation of fatiguedriven delamination using interface elements, Int. J. Numer. Methods Eng., 63(13) (2005) 1824-1848.
[23] H. Khoramishada, A.D. Crocombea, K.B. Katnama, I.A. Ashcroft, A generalised damage model for constant amplitude fatigue loading of adhesively bonded joints, Int. J. Adhes. Adhes., 30(6) (2010) 513-521.
[24] A. Turon, J. Costa, P.P. Camanho, C.G. Dávila, Simulation of delamination in composites under high-cycle fatigue, Compos. Part A, 38(11) (2007) 2270-2282.
[25] A. Pirondi, F. Moroni, A progressive damage model for the prediction of fatigue crack growth in bonded joints, J. Adhes., 86(5-6) (2010) 501-521.
[26] L. Daudeville, O. Allix, P. Ladevèze, Delamination analysis by damage mechanics: Some applications, Compos. Eng., 5(1) (1995) 17-24.
[27] A. Turon, J. Costa, P.P. Camanho, P. Maimí, Analytical and Numerical Investigation of the Length of the Cohesive Zone in Delaminated Composite Materials, In: Mechanical Response of Composites, Computational Methods in Applied Sciences, Springer, Dordrecht publisher, (2008).
[28] G. Bao, Z. Suo, Remarks on crack-bridging concepts, Appl. Mech. Rev., 45(8) (1992) 355-366.
[29] J.R. Rice, The Mechanics of Earthquake Rupture, In: A.M. Dziewonski, E. Boschi, (eds.) in Physics of the Earth’s Interior (Proc. International School of Physics ‘Enrico Fermi’, Course 78, 1979), Italian Physical Society and North-Holland Publisher Co., (1980) 555-649.