[1] W.F. Smith, Structure and Properties of Engineering Alloys, Lubbock, TX, USA: McGraw-Hill, (1981).
[2] S. Attar, M. Nagaral, H.N. Reddappa, V. Auradi, A review on particulate reinforced aluminum metal matrix composites, J. Emerging Tech. Innovative Res., 2(2) (2015) 225-229.
[3] A. Shokuhfar, M. Sabzehparvar, F. Kiani, The Science and Engineering of Advanced Materials Smart and Nanostructured Materials ,Tehran, Iran: kntu publication, (2014) (In Persian).
[4] H. Abdollah pours, Metal Matrix Composites, Semnan, Iran: Semnan University Press, (2013) (In Persian).
[5] C. Kaynak, S. Boylu, Effects of SiC particulates on the fatigue behaviour of an Al-Alloy matrix composite, Mater. Des., 27(9) (2006) 776-782.
[6] N. Chawla, K.K. Chawla, Metal Matrix Composites, First Edition: Springer US Publisher, (2006).
[7] N. Chawla, Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Advanced Engineering Materials, 3(6) (2001) 357-370.
[8] N. Chawla, J.E. Allison, Fatigue of Particle Reinforced Materials, In Encyclopedia of Materials: Science and Technology, Second Edition, Elsevier Amesterdam, The Netherland, (2001) 2967-2971.
[9] J.J. Lewandowski, Fracture and Fatigue of Particulate MMCs, In: T.W. Clayne (ed.), Compr. Compos. Mater. Metall. Matrix. Compos., Elsevier, 3 (2000) 151-187.
[10] J. LLorca, Fatigue of particle and whisker reinforced metal matrix composites, Prog. Mater. Sci., 47(3) (2002) 283-353.
[11] V.V. Ganesh, N. Chawla, Effect of reinforcementparticle-orientation anisotropy on the tensile and fatigue behavior of metal-matrix composites, Metall. Mater. Trans. A, 35(1) (2004) 53-61.
[12] J. Nemati, S. Sulaiman, A. Khalkhali, Improvement in mechanical properties of titanium deformed by ECAE process, J. Stress Anal., 1(1) (2016) 55-64.
[13] A. Madadi, H. Eskandari-Naddaf, M. NematiNejad, Evaluation of bond strength of reinforcement in concrete containing fibers, micro-silica and nano-silica, J. Stress Anal., 3(1) (2018) 11-19.
[14] G.H. Majzoobi, K. Rahmani, A. Atrian, An experimental investigation into wear resistance of MgSiC nanocomposite produced at high rate of compaction, J. Stress Anal., 3(1) (2018) 35-45.
[15] C. Balzani, W. Wagner, An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates, Eng. Fract. Mech., 75(9) (2008) 2597-2615.
[16] P.P. Camanho, C.G. Davila, M.F. De Moura, Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials, J. Compos. Mater., 37(16) (2003) 1415-1438.
[17] S. Sridharan, Delamination Behavior of Composites, Boca Raton, Woodhead Publisher, USA: CRC Press, (2008).
[18] L. Ye, Role of matrix resin in delamination onset and growth in composite laminates, Compos. Sci. Technol., 33(4) (1988) 257-277.
[19] M.L. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixedmode bending apparatus, Compos. Sci. Technol., 56(4) (1996) 439-449.
[20] Q. Meng, Z. Wang, Prediction of interfacial strength and failure mechanisms in particlereinforced metal-matrix composites based on a micromechanical model, Eng. Fract. Mech., 142 (2015) 170-183.
[21] D. Salimi-Majd, Investigation of delamination in laminated composites under fatigue loading using the cohesive interface element, MSc Thesis, School of mechanical engineering, Iran University of Science and Technology, Tehran, (2013) (In Persian).
[22] P. Robinson, U. Galvanetto, D. Tumino, G. Bellucci, D. Violeau, Numerical simulation of fatiguedriven delamination using interface elements, Int. J. Numer. Methods Eng., 63(13) (2005) 1824-1848.
[23] H. Khoramishada, A.D. Crocombea, K.B. Katnama, I.A. Ashcroft, A generalised damage model for constant amplitude fatigue loading of adhesively bonded joints, Int. J. Adhes. Adhes., 30(6) (2010) 513-521.
[24] A. Turon, J. Costa, P.P. Camanho, C.G. Dávila, Simulation of delamination in composites under high-cycle fatigue, Compos. Part A, 38(11) (2007) 2270-2282.
[25] A. Pirondi, F. Moroni, A progressive damage model for the prediction of fatigue crack growth in bonded joints, J. Adhes., 86(5-6) (2010) 501-521.
[26] L. Daudeville, O. Allix, P. Ladevèze, Delamination analysis by damage mechanics: Some applications, Compos. Eng., 5(1) (1995) 17-24.
[27] A. Turon, J. Costa, P.P. Camanho, P. Maimí, Analytical and Numerical Investigation of the Length of the Cohesive Zone in Delaminated Composite Materials, In: Mechanical Response of Composites, Computational Methods in Applied Sciences, Springer, Dordrecht publisher, (2008).
[28] G. Bao, Z. Suo, Remarks on crack-bridging concepts, Appl. Mech. Rev., 45(8) (1992) 355-366.
[29] J.R. Rice, The Mechanics of Earthquake Rupture, In: A.M. Dziewonski, E. Boschi, (eds.) in Physics of the Earth’s Interior (Proc. International School of Physics ‘Enrico Fermi’, Course 78, 1979), Italian Physical Society and North-Holland Publisher Co., (1980) 555-649.