[1] J.Q. Ye, Laminated Composite Plates and Shells: 3D Modeling, Springer-Verlag London Publisher, (2003).
[2] A. Bhimaraddi, Free vibration analysis of doubly curved shallow shells on rectangular planform using three dimensinal elasticity theory, Int. J. Solids Struct., 27(7) (1991) 897-913.
[3] W.J. Wang, K. Lin, Free vibration of laminated plates using a finite strip method based on a higher-order plate theory, Comput. Struct., 53(6) (1994) 1281-1289.
[4] J. Xiaoyu, 3-D vibration analysis of fiber reinforced composite laminated cylindrical shells, J. Vib. Acoust., 119(1) (1997) 46-51.
[5] Y.M. Tsai, Longitudinal motion of a thick transversely isotropic hollow cylinder, J. Pressure Vessel Tech., 113(4) (1991) 585-589.
[6] K. Xu, A.K. Noor, W.S. Burton, 3D solutions for free vibration of initially stressed thermoelectroelastic multilayered cylinders, J. Eng. Mech., 123(1) (1997) 45-51.
[7] J.Q. Ye, K.P. Soldatos, Three-dimensional vibration of laminated composite plates and cylindrical panels with arbitrarily located lateral surfaces point supports, Int. J. Mech. Sci., 38(3) (1996) 271-281.
[8] J.Q. Ye, K.P. Soldatos, Three-dimensional vibrations of cross-ply laminated hollow cylinders with
clamped edge boundaries, J. Vib. Acoust., 119(3) (1997) 317-323.
[9] K. Ding, L. Tang, Three-dimensional free vibration of thick laminated cylindrical shells with clamped edges, J. Sound Vib., 220(1) (1999) 171-177.
[10] C.Q. Chen, Y.P. Shen, Three-dimensional analysis for the free vibration of finite-length orthotropic
piezoelectric circular cylindrical shells, J. Vib. Acoust., 120(1) (1998) 194-198.
[11] W.Q. Chen, J. Ying, Q.D. Yang, Free vibrations of transversely isotropic cylinders and cylindrical shells, J. Pressure Vessel Tech., 120(4) (1998) 321-324.
[12] Y.C. Chern, C.C. Chao, Comparison of natural frequencies of laminates by 3-D theory, Part II: curved panels, J. Sound Vib., 230(5) (2000) 1009-1030.
[13] A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 1st edition (Cambridge University Press, Cambridge) 4th edition., Dover Publishing, New York, (1944).
[14] M.S. Qatu, On the validity of nonlinear shear deformation theories for laminated composite plates
and shells, Compos. Struct., 27(4) (1994) 395-401.
[15] W.T. Koiter, Theory of Thin Shells, ed. F.L. Niordson, Springer-Verlag Publisher, New York, (1969) 93-105.
[16] A.L. Gol’denveizer, Theory of Elastic Thin Shells English Translation, Pergamon Press, New York,
(1961).
[17] A.K. Noor, W.S. Burton, Assessment of computational models for multilayered composite shells,
Appl. Mech. Rev., 43(4) (1990) 67-97.
[18] P.M. Naghdi, J.G. Berry, On the equations of motion of cylindrical shells, J. Appl. Mech., 21 (1964)
160-166.
[19] J.H.S. Almeida, M.L. Ribeiro, V. Tita, S.C. Amico, Damage and failure in carbon epoxy filament wound composite tubes under external pressure: experimental and numerical approaches, Mater. Des., 96 (2016) 431-438.
[20] T. Üstün, V. Eskizeybek, A. Avci, Enhanced fatigue performances of hybrid nanoreinforced filament wound carbon/epoxy composite pipes, Compos. Struct., 150 (2016) 124-131.
[21] M.L. Ribeiro, D. Vandepitte, V. Tita, Experimental analysis of transverse impact loading on composite cylinders, Compos. Struct., 133 (2015) 547-563.
[22] H. Zhou, Z. Pan, R.K. Gideon, B. Gu, B. Sun, Experimental and numerical investigation of the
transverse impact damage and deformation of 3-D circular braided composite tubes from mesostructure approach, Compos. Part B: Eng., 86 (2016) 243-253.
[23] H. Luo, Y. Yan, X. Men, C. Jin, Progressive failure analysis and energy-absorbing experiment of composite tubes under axial dynamic impact, Compos. Part B: Eng., 87 (2016) 1-11.
[24] V.S. Sokolinsky, K.C. Indermuehle, J.A. Hurtado, Numerical simulation of the crushing process of
a corrugated composite plate, Part A: Compos. Appl. Sci. Manuf., 42(9) (2011) 1119-1126.
[25] M. Hemmatnezhad, G.H. Rahimi, M. Tajik, F. Pellicano, Experimental, numerical and analytical investigation of free vibrational behavior of GFRP-stiffened composite cylindrical shells, Compos. Struct., 120 (2015) 509-518.
[26] J.S. Yang, J. Xiong, L. Ma, L.N. Feng, S.Y. Wang, L.Z. Wu, Modal response of all-composite corrugated sandwich cylindrical shells, Compos. Sci. Technol., 115 (2015) 9-20.
[27] S. Gurgen, M.A. Sofuglu, Experimental investigation on vibration characteristics of shear thickeningfluid filled CFRP tubes, Compos. Struct., 226 (2019) 111-236.
[28] A. Capozucca, E. Magagnini, Experimental vibration response of homogeneous beam models damaged by notches and strengthened by CFRP lamina, Compos. Struct., 206 (2018) 563-577.
[29] M. Sit, C., Ray, Free vibration characteristics of glass and bamboo epoxy laminates under hygrothermal effect: A comparative approach, Compos. Part B: Eng., 176 (2019) 107333.
[30] Z. Yu, L. Zhang, J. Hu, Cracked modeling and vibration analysis of pipe with a part-through crack,
J. Vibro Eng., 19( 2) (2017) 930-942.
[31] Egyptian code of practice for steel construction and bridges (Allowable stress design- ASD): Code
No. 279, Housing and building national research center, Ministry of Housing, Utilities and Urban Deveplopment and Permanent Committee for the Code of Practice for Steel Construction and Bridges, Arab Republic of Egypt, (2001).
[32] M. Gopalakrishnan, S. Muthu, R. Subramanian, R. Santhanakrishnan, L.M. Karthigeyan, Tensile
properties study of E-Glass/Epoxy laminate and π/4 quasi- isotropic E-Glass/Epoxy laminate., Polym. Polym. Compos., 24(6) (2016) 429-446.
[33] I. Ortiz de Mendibil, L. Aretxabaleta, M. Sarrionandia, M, Mateos, J. Aurrekoetxea, Impact behaviour of glass fibre-reinforced epoxy/aluminium fibre metal laminate manufactured by Vacuum Assisted Resin Transfer Moulding, Compos. Struct., 140 (2016) 118-124.
[34] R. Allemang, Analytical and Experimental Modal Analysis, Department of Mechanical, PhD Thesis,
Industrial and Nuclear Engineering University of Cincinnati, Ohio., 219 (1999).
[35] S. Rad, Introduction to Modal Analysis, Department of Mechanical Enginnering, Isfahan University of Technology, Iran, (2012).
[36] C. Tao, Y. Fu, T. Dai, Dynamic analysis for cracked fiber-metal laminated beams carrying moving loads and its application for wavelet based crack detection, Compos. Struct., 159 (2017) 463-470.
[37] A.V. Lopatin, E.V. Morozov, Fundamental frequency of the laminated composite cylindrical shell with clamped edges, Int. J. Mech. Sci., 92 (2015) 35-43.
[38] H. Allahbakhsh, M. Shariati, Instability of cracked CFRP composite cylindrical shells under combined loading, Thin-Walled Struct., 74 (2014) 28-35.