Ductile Failure Prediction of Friction Stir Welded AA7075-T6 Aluminum Alloy Weakened by a V-notch

Document Type: Original Article


Aerospace Engineering Deparement, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran.



With increasing applications of the Friction Stir Welding (FSW), a proper study of the fracture behavior is required. In this research, fracture behavior of AA7075-T6 alloy joint made by FSW is investigated by evaluat-ing a fracture test on the Diagonally Loaded Square Plate (DLSP) specimen containing a V-notch, under various loading conditions. Significant plastic deformation takes place around the notch tip at the propagation instance, which shows the elastic-plastic behavior of the welded joint. Ductile failure needs some elastic-plastic fracture mechanics criteria, which are complex and time-consuming. To deal with this, the Equivalent Material Concept (EMC) was applied via replacing a virtual brittle material with a ductile material by equating the tensile behavior of the welded material. In order to predict the Load-Carrying Capacity (LCC) of the FSW DLSP specimens, the EMC was used, which is in conjunction with two brittle fracture criteria called the Maximum Tangential Stress (MTS) and the Mean Stress (MS). Finally, results indicate that with a slight difference, two mentioned criteria could predict the LLC of the V-notched specimens.


[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, C.J. Dawes, Friction stir butt welding, International Patent Application No. PCT/GB92/0220, (1991).
[2] P. Bahemmat , M.K. Besharati, M. Haghpanahi, A. Rahbari, R. Salekrostam, Mechanical, micro-, and macrostructural analysis of AA7075–T6 fabricated by friction stir butt welding with different rotational speeds and tool pin profiles, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 224(3) (2010) 419-433.
[3] W. Kim, B.C. Goo, S.T. Won, Optimal design of friction stir welding process to improve tensile force of the joint of A6005 extrusion, Mater. Manuf. Process., 25(7) (2010) 637-643.
[4] M. Peel, A. Steuwer, M. Preuss, P.J. Withers., Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta Mater., 51(16) (2003) 4791-4801.
[5] C.M. Chen, R. Kovacevic, Finite element modeling of friction stir welding-thermal and thermomechanical analysis, Int. J. Tools Manuf., 43(13) (2003) 1319-1326.
[6] H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding, Model. Simul. Mater. Sci. Eng., 12 (2004) 143-157.
[7] S. Rajakumar, V. Balasubramanian, Establishing relationships between mechanical properties of
aluminium alloys and optimised friction stir welding process parameters, Mater. Des., 40 (2012) 17-35.
[8] K. Kumar, S.V. Kailas, T.S. Srivatsan, Influence of tool geometry in friction stir welding, Mater. Manuf. Process., 23(2) (2008) 188-194.
[9] P.M.G.P. Moreira, T. Santos, S.M.O. Tavares, V. Richter-Trummer, P. Vilaça, P.M.S.T. de Castro, Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6, Mater. Des., 30(1) (2009) 180-187.
[10] R. Palanivel, P.K. Mathews, N. Murugan, I. Dinaharan, Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys, Mater. Des., 40 (2012) 7-16.
[11] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R: Reports., 50(1-2) (2005) 1-78.
[12] P. Cavaliere, R. Nobile, F.W. Panella, A. Squillace, Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding, Int. J. Mach. Tools Manuf., 46(6) (2006) 588-594.
[13] A. Von-Strombeck, J.F. Dos-Santos, F. Torster, P. Laureano, M. Kocak, Friction Toughness Behaviour of Friction Stir Welding Joints on Aluminum Alloys. First Int, Symp. Frict. Stir Welding, Thousand Oaks, California, USA, (1999).
[14] M.G. Dawes, S.A. Karger, T.L. Dickerson, J. Przydatek, Strength and fracture toughness of friction stir welds in aluminum alloys, Proc. 2nd Int. Frict. Stir Weld. Symp., (2000).
[15] M.K. Kulekci, I. Sevim, U. Esme, Fracture toughness of friction stir-welded lap joints of aluminum alloys, J. Mater. Eng. Perform., 21(7) (2012) 1260-1265.
[16] A.R. Shahani, A. Farrahi, Effect of sheet thickness on fatigue behavior of friction stir spot weld of Al 6061-T6 lap-shear configuration, J. Stress Anal., 3(1) (2018) 61-68.
[17] P. Cavaliere, F. Panella, Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding, J. Mater. Process. Technol., 206(1-3) (2008) 249-255.
[18] A.F. Golestaneh, A. Ali, M. Zadeh, Modelling the fatigue crack growth in friction stir welded joint of 2024-T351 Al alloy, Mater. Des., 30(8) (2009) 2928-2937.
[19] A.F. Golestaneh, A. Ali, W.S. Voon, M.F. Mastapha, M.Z. Mohammadi, Simulation of fatigue crack growth in friction stir welded joints in 2024-T351 Al alloy, Suranaree J. Sci. Technol., 15(4) (2008) 271-285.
[20] A. Alavi Nia, A. Shirazi, A numerical and experimental investigation into the effect of welding parameters on thermal history in friction stir welded copper sheets, J. Stress Anal., 2(1) (2017) 1-9.
[21] P.M.G.P. Moreira, F.M.F. de Oliveira, P.M.S.T. de Castro, Fatigue behaviour of notched specimens of friction stir welded aluminium alloy 6063-T6, J. Mater. Process. Technol., 207(1-3) (2008) 283-292.
[22] M.A. Sutton, A.P. Reynolds, B. Yang, R. Taylor, Mixed mode I / II fracture of 2024-T3 friction stir welds, Eng. Fract. Mech., 70(15) (2003) 2215-2234.
[23] M.A. Sutton, A.P. Reynolds, B. Yang, R. Taylor, Mode I fracture and microstructure for 2024-T3 friction stir welds, Mater. Sci. Eng. A, 354(1-2) (2003) 6-16.
[24] M.A. Sutton, A.P. Reynolds, J. Yan, B. Yang, N. Yuan, Microstructure and mixed mode I / II fracture of AA2524-T351 base material and friction stir welds, Eng. Fract. Mech., 73(4) (2006) 391-407.
[25] A.R. Torabi, M.H. Kalantari, M.R.M. Aliha, Fracture analysis of dissimilar Al-Al friction stir welded joints under tensile/shear loading, Fatigue Fract. Eng. Mater. Struct., 41(9) (2018) 2040-2053.
[26] M.R.M. Aliha, M.H. Kalantari, S.M.N. Ghoreishi, A.R. Torabi, S. Etesam, Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6/pure copper joints, Theor. Appl. Fract. Mech., 103 (2019) 102243.
[27] D. Cormier, O. Harrysson, H. West, Characterization of H13 steel produced via electron beam melting, Rapid Prototyp J., 10(1) (2004) 35-41.
[28] M.R. Ayatollahi, M.R.M. Aliha, Analysis of a new specimen for mixed mode fracture tests on brittle materials, Eng. Fract. Mech., 76(11) (2009) 1563-153.
[29] A.R. Torabi, A. Campagnolo, F. Berto, Largescale yielding failure prediction of notched ductile plates by means of the linear elastic notch, Fract. Mech. Strength Mater., 49(2) (2017) 224-433.
[30] A.R. Torabi, Estimation of tensile load-bearing capacity of ductile metallic materials weakened by a V-notch: The equivalent material concept, Mater. Sci. Eng. A, 536 (2012) 249-255.
[31] F. Erdogan, GC. Sih, On the crack extension in plates under plane loading and transverse shear, J. Basic Eng., 85 (1963) 519-525.
[32] M.R.M. Aliha, M.R. Ayatollahi, Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion, Int. J. Solids Struct., 49(13) (2012) 1877-1883.
[33] A. Seweryn, S. Poskrobko, Z. Mróz, Brittle fracture in plane elements with sharp notches under mixed-mode loading, J. Eng. Mech., 123(6) (1997) 535-543.
[34] A.R. Torabi, M. Alaei, Application of the equivalent material concept to ductile failure prediction of blunt V-notches encountering moderatescale yielding, Int. J. Damage Mech., 25(6) (2016) 853-877.
[35] A.R. Torabi, R. Habibi, Investigation of ductile rupture in U-notched Al 6061-T6 plates under mixed mode loading, Fatigue Fract. Eng. Mater. Struct., 39(5) (2016) 551-565.
[36] S. Filippi, P. Lazzarin, R. Tovo, Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates, Int. J. Solids Struct., 39(17) (2002) 4543-4565.