[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, C.J. Dawes, Friction stir butt welding, International Patent Application No. PCT/GB92/0220, (1991).
[2] P. Bahemmat , M.K. Besharati, M. Haghpanahi, A. Rahbari, R. Salekrostam, Mechanical, micro-, and macrostructural analysis of AA7075–T6 fabricated by friction stir butt welding with different rotational speeds and tool pin profiles, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 224(3) (2010) 419-433.
[3] W. Kim, B.C. Goo, S.T. Won, Optimal design of friction stir welding process to improve tensile force of the joint of A6005 extrusion, Mater. Manuf. Process., 25(7) (2010) 637-643.
[4] M. Peel, A. Steuwer, M. Preuss, P.J. Withers., Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta Mater., 51(16) (2003) 4791-4801.
[5] C.M. Chen, R. Kovacevic, Finite element modeling of friction stir welding-thermal and thermomechanical analysis, Int. J. Tools Manuf., 43(13) (2003) 1319-1326.
[6] H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding, Model. Simul. Mater. Sci. Eng., 12 (2004) 143-157.
[7] S. Rajakumar, V. Balasubramanian, Establishing relationships between mechanical properties of
aluminium alloys and optimised friction stir welding process parameters, Mater. Des., 40 (2012) 17-35.
[8] K. Kumar, S.V. Kailas, T.S. Srivatsan, Influence of tool geometry in friction stir welding, Mater. Manuf. Process., 23(2) (2008) 188-194.
[9] P.M.G.P. Moreira, T. Santos, S.M.O. Tavares, V. Richter-Trummer, P. Vilaça, P.M.S.T. de Castro, Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6, Mater. Des., 30(1) (2009) 180-187.
[10] R. Palanivel, P.K. Mathews, N. Murugan, I. Dinaharan, Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys, Mater. Des., 40 (2012) 7-16.
[11] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R: Reports., 50(1-2) (2005) 1-78.
[12] P. Cavaliere, R. Nobile, F.W. Panella, A. Squillace, Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding, Int. J. Mach. Tools Manuf., 46(6) (2006) 588-594.
[13] A. Von-Strombeck, J.F. Dos-Santos, F. Torster, P. Laureano, M. Kocak, Friction Toughness Behaviour of Friction Stir Welding Joints on Aluminum Alloys. First Int, Symp. Frict. Stir Welding, Thousand Oaks, California, USA, (1999).
[14] M.G. Dawes, S.A. Karger, T.L. Dickerson, J. Przydatek, Strength and fracture toughness of friction stir welds in aluminum alloys, Proc. 2nd Int. Frict. Stir Weld. Symp., (2000).
[15] M.K. Kulekci, I. Sevim, U. Esme, Fracture toughness of friction stir-welded lap joints of aluminum alloys, J. Mater. Eng. Perform., 21(7) (2012) 1260-1265.
[16] A.R. Shahani, A. Farrahi, Effect of sheet thickness on fatigue behavior of friction stir spot weld of Al 6061-T6 lap-shear configuration, J. Stress Anal., 3(1) (2018) 61-68.
[17] P. Cavaliere, F. Panella, Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding, J. Mater. Process. Technol., 206(1-3) (2008) 249-255.
[18] A.F. Golestaneh, A. Ali, M. Zadeh, Modelling the fatigue crack growth in friction stir welded joint of 2024-T351 Al alloy, Mater. Des., 30(8) (2009) 2928-2937.
[19] A.F. Golestaneh, A. Ali, W.S. Voon, M.F. Mastapha, M.Z. Mohammadi, Simulation of fatigue crack growth in friction stir welded joints in 2024-T351 Al alloy, Suranaree J. Sci. Technol., 15(4) (2008) 271-285.
[20] A. Alavi Nia, A. Shirazi, A numerical and experimental investigation into the effect of welding parameters on thermal history in friction stir welded copper sheets, J. Stress Anal., 2(1) (2017) 1-9.
[21] P.M.G.P. Moreira, F.M.F. de Oliveira, P.M.S.T. de Castro, Fatigue behaviour of notched specimens of friction stir welded aluminium alloy 6063-T6, J. Mater. Process. Technol., 207(1-3) (2008) 283-292.
[22] M.A. Sutton, A.P. Reynolds, B. Yang, R. Taylor, Mixed mode I / II fracture of 2024-T3 friction stir welds, Eng. Fract. Mech., 70(15) (2003) 2215-2234.
[23] M.A. Sutton, A.P. Reynolds, B. Yang, R. Taylor, Mode I fracture and microstructure for 2024-T3 friction stir welds, Mater. Sci. Eng. A, 354(1-2) (2003) 6-16.
[24] M.A. Sutton, A.P. Reynolds, J. Yan, B. Yang, N. Yuan, Microstructure and mixed mode I / II fracture of AA2524-T351 base material and friction stir welds, Eng. Fract. Mech., 73(4) (2006) 391-407.
[25] A.R. Torabi, M.H. Kalantari, M.R.M. Aliha, Fracture analysis of dissimilar Al-Al friction stir welded joints under tensile/shear loading, Fatigue Fract. Eng. Mater. Struct., 41(9) (2018) 2040-2053.
[26] M.R.M. Aliha, M.H. Kalantari, S.M.N. Ghoreishi, A.R. Torabi, S. Etesam, Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6/pure copper joints, Theor. Appl. Fract. Mech., 103 (2019) 102243.
[27] D. Cormier, O. Harrysson, H. West, Characterization of H13 steel produced via electron beam melting, Rapid Prototyp J., 10(1) (2004) 35-41.
[28] M.R. Ayatollahi, M.R.M. Aliha, Analysis of a new specimen for mixed mode fracture tests on brittle materials, Eng. Fract. Mech., 76(11) (2009) 1563-153.
[29] A.R. Torabi, A. Campagnolo, F. Berto, Largescale yielding failure prediction of notched ductile plates by means of the linear elastic notch, Fract. Mech. Strength Mater., 49(2) (2017) 224-433.
[30] A.R. Torabi, Estimation of tensile load-bearing capacity of ductile metallic materials weakened by a V-notch: The equivalent material concept, Mater. Sci. Eng. A, 536 (2012) 249-255.
[31] F. Erdogan, GC. Sih, On the crack extension in plates under plane loading and transverse shear, J. Basic Eng., 85 (1963) 519-525.
[32] M.R.M. Aliha, M.R. Ayatollahi, Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion, Int. J. Solids Struct., 49(13) (2012) 1877-1883.
[33] A. Seweryn, S. Poskrobko, Z. Mróz, Brittle fracture in plane elements with sharp notches under mixed-mode loading, J. Eng. Mech., 123(6) (1997) 535-543.
[34] A.R. Torabi, M. Alaei, Application of the equivalent material concept to ductile failure prediction of blunt V-notches encountering moderatescale yielding, Int. J. Damage Mech., 25(6) (2016) 853-877.
[35] A.R. Torabi, R. Habibi, Investigation of ductile rupture in U-notched Al 6061-T6 plates under mixed mode loading, Fatigue Fract. Eng. Mater. Struct., 39(5) (2016) 551-565.
[36] S. Filippi, P. Lazzarin, R. Tovo, Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates, Int. J. Solids Struct., 39(17) (2002) 4543-4565.