Effects of Couple-stress Resultants on Thermo-electro-mechanical Behavior of Vibrating Piezoelectric Micro-plates Resting on Orthotropic Foundation

Document Type: Original Article


Department of Mechanical Engineering, Arak University, Arak, Iran.



This work aimed to study the thermo-electro vibration of a piezoelectric micro-plate resting on the orthotropic foundation. To catch the small-scale effects of the structure, couple-stress theory was employed. Motions of the structure were modelled based upon different shear deformation theories including exponential, trigonometric, hyperbolic, parabolic, and forth-order shear defor-mation theories. These modified shear deformation theories are capable of considering transverse shear deformation effects and rotary inertia. Equation of motions are derived with Hamilton’s prin-ciple and to solve these equations an analytical approach is applied. Besides, Effect of different boundary conditions including SSSS, CSSS, CSCS, CCSS and CCCC are investigated. The pre-sent results are validated with the previously published results. In the result section, the influences of various parameters such as increasing temperature, boundary conditions, foundation parameters, thickness ratio, aspect ratio, external volatage, and length scale on the natural frequencies of the plate are illustrated in detail.


[1] C.K. Lee, Theory of laminated piezoelectric plates for the design of distributed sensors/actuators, Part I: Governing equations and reciprocal relationships, J. Acoust. Soc. Am., 87(3) (1990) 1144-1158.
[2] P.J.C. Branco, J.A. Dente, On the electromechanics of a piezoelectric transducer using a bimorph cantilever undergoing asymmetric sensing and actuation, Smart Mater. Struct., 13(4) (2004) 631-642.
[3] W.M. Zhang, G. Meng, D.I. Chen, Stability, Nonlinearity and reliability of electrostatically actuated MEMS devices, Sensors, 7(5) (2007) 760-796.
[4] J.M. Dietl, A.M. Wickenheiser, E. Garcia, A Timoshenko beam model for cantilevered pie-zoelectric energy harvesters, Smart Mater. Struct., 19(5) (2010) 055018.
[5] A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., 10(3) (1972) 233-248.
[6] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislo-cation and surface waves, J. Appl. phys., 54(9) (1983) 4703-4710.
[7] A.C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlog New York Publisher, (2002).
[8] E.C. Aifantis, Strain gradient interpretation of size effects, Int. J. Fract., 95 (1/4) (1999) 299-314.
[9] R.A. Toupin, Elastic materials with couplestresses, Archi. Rational Mech. Anal., 11(1) (1962) 385-414.
[10] K. Khorshidi, T. Asgari, A. Fallah, Free vibrations analysis of functionally graded rectangular nanoplates based on nonlocal exponential shear deformation theory, Mech. Advanced Compos. Struct., 2(2) (2015) 79-93.
[11] C. Liu, L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory, Compos. Struct., 106 (2013) 167-174.
[12] Y.S. Li, Z.Y. Cai, S.Y. Shi, Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory, Compos. Struct., 111 (2014) 522-529.
[13] N.A. Fleck, J.W. Hutchinson, A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, 41(12) (1993) 1825-1857.
[14] R. Ansari, R. Gholami, S. Sahmani, Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory, Compos. Struct., 94(1) (2011) 221-228.
[15] R.D. Mindlin, H.F. Tiersten, Effects of couplestresses in linear elasticity, Arch. Rational Mech. Anal., 11(1) (1962) 415-448.
[16] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39(10) (2002) 2731-2743.
[17] J. Lei, Y. He, B. Zhang, D. Liu, L. Shen, S. Guo, A size-dependent FG micro-plate model incorporating higher-order shear and normal deformation effects based on a modified couple stress theory, Int. J. Mech. Sci., 104 (2015) 8-23.
[18] M.H. Shojaeefard, H.S. Googarchin, M. Ghadiri, M. Mahinzare, Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT, Appl. Math. Modell., 50 (2017) 633-655.
[19] A. Farzam, B. Hassani, Thermal and mechanical buckling analysis of FG carbon nanotube reinforced composite plates using modified couple stress theory and isogeometric approach, Compos. Struct., 206 (2018) 774-790.
[20] J. Kim, K.K. Źur, J.N. Reddy, Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates, Compos. Struct., 209 (2019) 879-888.
[21] M. Aydogdu, Comparison of various shear deformation theories for bending, buckling, and vibration of rectangular symmetric cross-ply plate with simply supported edges, J. Compos. Mater., 40(23) (2006) 2143-2155.
[22] K.P. Soldatos, A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mech., 94(3-4) (1992) 195-220.
[23] V. Panc, Theories of Elastic Plates, Springer Netherlands, (1975).
[24] S. Hosseini-Hashemi, K. Khorshidi, M. Amabili, Exact solution for linear buckling of rec-tangular Mindlin plates, J. Sound Vib., 315(1-2) (2008) 318-342.
[25] A. Hassani, M. Gholami, Analytical and numerical bending solutions for thermoelastic functionally graded rotating disks with nonuniform thickness based on mindlin’s theory, J. Stress Anal., 2(1) (2017) 35-49.
[26] H.T. Thai, D.H. Choi, A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates, Compos. Struct., 101 (2013) 332-340.
[27] K. Khorshidi, A. Fallah, Buckling analysis of functionally graded rectangular nano-plate based on nonlocal exponential shear deformation theory, Int. J. Mech. Sci., 113 (2016) 94-104.
[28] K. Khorshidi, A. Fallah, Effect of exponential stress resultant on buckling response of functionally graded rectangular plates, J. Stress Anal., 2(1) (2017) 27-33.
[29] P. Shi, C. Dong, F. Sun, W. Liu, Q. Hu, A new higher order shear deformation theory for static, vibration and buckling responses of laminated plates with the isogeometric analysis, Compos. Struct., 204 (2018) 342-358.
[30] H. Tanzadeh, H. Amoushahi, Buckling and free vibration analysis of piezoelectric laminated composite plates using various plate deformation theories, European J. Mech. Solids, 74 (2019) 242-256.
[31] P.L. Pasternak, On a New Method of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstuvei Arkhitekture, (1954).
[32] A. Kutlu, M.H. Omurtag, Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method, Int. J. Mech. Sci., 65(1) (2012) 64-74.
[33] A.S. Sayyad, Y.M. Ghugal, Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory, Appl. Comput. Mech., 6(1) (2012) 65-82.
[34] Y.M. Ghugal, A.S. Sayyad, Free vibration of thick orthotropic plates using trigonometric shear deformation theory, Lat. Am. J. Solids Struct., 8(3) (2011) 229-243.
[35] M. Karama, K.S. Afaq, S. Mistou, A new theory for laminated composite plates, Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater. Des. Appl., 223(2) (2009) 53-62.
[36] E. Reissner, On transverse bending of plates, Including the effect of transverse shear deformation, Int. J. Solids Struct., 11(5) (1974) 567-573.
[37] L.L. Ke, C. Liu, Y.S. Wang, Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions, Physica E, 66 (2015) 93-106.
[38] K. Khorshidi, M. Karimi, Analytical modeling for vibrating piezoelectric nanoplates in interaction with inviscid fluid using various modified plate theories, Ocean Eng., 181 (2019) 267-280.
[39] M. Bahreman, H. Darijani, A.B. Fard, The sizedependent analysis of microplates via a newly developed shear deformation theory, Acta Mech., 230(1) (2019) 49-65.