Experimental Investigation of Weld Quality for Dissimilar Welding of AA6061-T6/AA7075-T6 Aluminum Alloys

Document Type: Original Article


1 Mechanical Engineering Department, Arak University of Technology, Arak, Iran.

2 Mechanical Engineering Department, University of Aveiro, Campus de Santiago, Aveiro, Portugal.

3 Materials and Metallurgical Engineering Department, Arak University, Arak, Iran.



In this article, the friction stir welding of dissimilar AA6061-T6/AA7075-T6 aluminum alloys was studied experimentally. The joining process was implemented with and without the addition of the TiO2 nanoparticles. To infer the resulting quality, tensile tests were carried out and the microstructure of the welded samples was investigated by the optical microscope. Furthermore,
the samples were welded using gas tungsten arc welding (GTAW) to provide further comparisons with the FSW process. The ultimate tensile strength and maximum elongation increased by 12.3 and 12.5% respectively by adding TiOnanoparticles. Microstructure observation shows that equiaxed grains formed in the FSW process and no precipitation aging occurred in the melting zone-however, precipitation particles can be observed in the heat-affected zone. Coarser grains can be obtained by adding TiO2 nanoparticles, resulting in good dispersion at the stir zone and retarding the dynamic recrystallization (pinning the grain boundary movements). The sample welded by the GTAW process
showed very weak strength compared to the samples welded by the friction stir welding process.


[1] J.F. Guo, H.C. Chen, C.N. Sun, G. Bi, Z. Sun, Wei, J., Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters, Mater. Des., 56 (2014) 185-192.
[2] H. Jamshidi Aval, Influences of pin profile on the mechanical and microstructural behaviors in dissimilar friction stir welded AA6082–AA7075 butt joint, Mater. Des., 67 (2015) 413-421.
[3] P. Cavaliere, A. De Santis, F. Panella, A. Squillace, Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding, Mater. Des., 30(3) (2009) 609-616.
[4] R. Palanivel, P. Koshy Mathews, N. Murugan, I. Dinaharan, Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys, Mater. Des., 40 (2012) 7-16.
[5] H. Jamshidi Aval, S. Serajzadeh, A.H. Kokabi, Thermo-mechanical and microstructural issues in dissimilar friction stir welding of AA5086-AA6061, J. Mater. Sci., 46(10) (2011) 3258-3268.
[6] R. Palanivel, P. Koshy Mathews, I. Dinaharan, N. Murugan, Mechanical and metallurgical properties of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys, Trans. Nonferrous Met. Soc. China, 24(1) (2014) 58-65.
[7] K.J. Colligan, Material flow behavior during friction stir welding of aluminum, Weld. J., 78 (1999) 229S-237S.
[8] P.H. Shah, V. Badheka, An experimental investigation of temperature distribution and joint properties of Al 7075 T651 friction stir welded aluminium alloys, Procedia Technol., 23 (2016) 543-550.
[9] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng., R, 50(1-2) (2005) 1-78.
[10] Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Recent advances in friction stir welding/processing of aluminum alloys: microstructural evolution and mechanical properties, Crit. Rev. Solid State Mater. Sci., 43(4) (2018) 269-333.
[11] D. Devaiah, K. Kishore, P. Laxminarayana, Optimal FSW process parameters for dissimilar aluminium alloys (AA5083 and AA6061) using Taguchi technique, Mater. Today. Proc., 5(2) (2018) 4607-4614.
[12] K.N. Wakchaure, A.G. Thakur, V. Gadakh, A. Kumar, Multi-objective optimization of friction stir welding of aluminium alloy 6082-T6 Using hybrid Taguchi-Grey relation analysis- ANN method, Mater. Today. Proc., 5(2) (2018)7150-7159.
[13] G. Ugrasen, G. Bharath, G. Kishor Kumar, R. Sagar, P.R. Shivu, R. Keshavamurthy, Optimization of process parameters for Al6061-Al7075 alloys in friction stir welding using Taguchi’s technique, Mater. Today. Proc., 5(1) (2018) 3027-3035.
[14] K. Jagathesh, M.P. Jenarthanan, P. Dinesh Babu, C. Chanakyan, Analysis of factors influencing tensile strength in dissimilar welds of AA2024 and AA6061 produced by Friction Stir Welding (FSW), Aust. J. Mech. Eng, 15(1) (2017) 19-26.
[15] N. Sharifi Asl, S.E. Mirsalehi, K. Dehghani, Effect of TiO2 nanoparticles addition on microstructure
and mechanical properties of dissimilar friction stir welded AA6063-T4 aluminum alloy and AZ31B-O
magnesium alloy, J. Manuf. Proc., 38 (2019) 338-354.
[16] H.C. Madhu, P. Ajay Kumar, C.S. Perugu, S.V. Kailas, Microstructure and mechanical properties of friction stir process derived Al-TiO2 nanocomposite, J. Mater. Eng. Perform., 27 (2018) 1318-1326.
[17] S.S. Mirjavadi, M. Alipour, S. Emamian, S. Kord, A.M.S. Hamouda, P.G. Koppad, R. Keshavamurthy, Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance, J. Alloys Compd., 712 (2017) 795-803.
[18] S. Rajakumar, V. Balasubramanian, Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters, Mater. Des., 40 (2012) 17-35.
[19] M.M.Z. Ahmed, S. Ataya, M.M. El-Sayed Seleman, H.R. Ammar, E. Ahmed, Friction stir welding of similar and dissimilar AA7075 and AA5083, J. Mater. Process. Technol., 242 (2017) 77-91.
[20] Shahabuddin, V.K. Dwivedi, A. Sharma, Experimental investigation of the mechanical properties
and microstructure of AA 7075-T6 during underwater friction stir welding process, Int. J. Mech. Eng. Adv. Technol., 8(4) (2019) 1289-1294.
[21] Shahabuddin, V.K. Dwivedi, Effect of tool geometry of friction stir welding on mechanical properties of AA-7075 aluminum alloy, Int. J. Mech. Eng. Technol., 9(6) (2018) 625-633.
[22] V. Saravanan, S. Rajakumar, A. Muruganandam, Effect of friction stir welding process parameters
on microstructure and mechanical properties of dissimilar AA6061-T6 and AA7075-T6 aluminum
alloy joints, Metallography, Microstructure, and Analysis, 5(6) (2016) 476-485.
[23] V. Saravanan, N. Banerjee, R. Amuthakkannan, S. Rajakumar, Effect of heat input on tensile
properties of friction stir welded AA6061-T6 and AA7075-T6 dissimilar aluminum alloy joints, Int. J. Multidiscip. Sci. Emerging Res., 3(1) (2014) 961-965.
[24] K.R. Ramesh Babu, V. Anbumalar, An experimental analysis and process parameter optimization on AA7075 T6-AA6061 T6 alloy using friction stir welding, J. Adv. Mech. Des. Sys. Manuf., 13(2) (2019) 1-10.
[25] A. Nouri, M. Kazemi Nasrabadi, Ductile failure prediction of friction stir welded AA7075-T6 aluminum alloy weakened by a V-notch, J. Stress Anal., 4(1) (2019) 113-124.
[26] P. Chetan, P. Hemant, P. Hiralal, Experimental investigation of hardness of FSW and TIG joints of
aluminium alloys of AA7075 and AA6061, Frattura ed Integrità Strutturale (Fracture and Structural Integrity), 37 (2016) 325-332.
[27] M. Safari, J. Joudaki, Coupled EulerianLagrangian (CEL) modeling of material flow in dissimilar friction stir welding of aluminum alloys, Iran. J. Mater. Form., 6(2) (2019) 10-19.
[28] A. Alavi Nia, A. Shirazi, A numerical and experimental investigation into the effect of welding parameters on thermal history in friction stir welded copper sheets, J. Stress Anal., 2(1) (2017) 1-9.
[29] S. Kou, Welding Metallurgy, 2nd Ed. John Wiley and Sons Inc., New Jersey, USA (2003).
[30] https://www.metallographic.com/MetallographicEtchants/Metallography-Aluminum-etchants.htm,
[31] ASTM E8/E8M–15a Standard Test Methods for Tension Testing of Metallic Materials, American
Society for Testing and Materials: West Conshohocken (2015).
[32] https://www.Matweb.com, 2020.
[33] M. Ashby, R. Messler, R. Asthana, E. Furlani, R.E. Smallman, A.H.W. Ngan, R.J. Crawford, N.
Mills, Engineering Materials and Processes Desk Reference, 1st Ed. Butterworth-Heinemann, Oxford, UK (2009).
[34] R. Nandan, T. Debroy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding–process,
weldment structure and properties, Prog. Mater. Sci., 53(6) (2008) 980-1023.
[35] E. Nes, N. Ryum, O. Hunderi, On the Zener drag, Acta. Mater., 33(1) (1985) 11-22.