[1] D.H. Shin, J.J. Park, Y.S. Kim, K.T. Park, Constrained groove pressing and its application to grain refinement of aluminum, Mater. Sci. Eng. A, 328(1-2) (2002) 98-103.
[2] A. Krishnaiah, U. Chakkingal, P. Venugopal, Production of ultrafine grain sizes in aluminium sheets
by severe plastic deformation using the technique of groove pressing, Scr. Mater., 52(12) (2005) 1229-1233.
[3] J.W. Lee, J.J. Park, Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement, J. Mater. Process. Technol., 130-131 (2002) 208-213.
[4] J. Alkorta, J.G. Sevillano, Nanomaterials by Severe Plastic Deformation: NANOSPD2, (2002) 491-497.
[5] E. Rafizadeh, A. Mani, M. Kazeminezhad, The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet, Mater. Sci. Eng. A, 515(1-2) (2009) 162-168.
[6] D.H. Shin, K.T. Park, Ultrafine grained steels processed by equal channel angular pressing, Mater. Sci. Eng. A, 410-411 (2005) 299-302.
[7] F. Khodabakhshi, M. Abbaszadeh, S.R. Mohebpour, H. Eskandari, 3D finite element analysis and experimental validation of constrained groove pressing–cross route as an SPD process for sheet form metals, Int. J. Adv. Manuf. Technol., 73(9) (2014) 1291-305.
[8] E. Hosseini, M. Kazeminezhad, Nanostructure and mechanical properties of 0–7 strained aluminum by
CGP: XRD, TEM and tensile test, Mater. Sci. Eng. A, 526(1-2) (2009) 219-224.
[9] F. Khodabakhshi, M. Kazeminezhad, A.H. Kokabi, Constrained groove pressing of low carbon steel:
Nano-structure and mechanical properties, Mater. Sci. Eng. A, 527(16-17) (2010) 4043-4049.
[10] M. Kazeminezhad, E. Hosseini, Optimum groove pressing die design to achieve desirable severely
plastic deformed sheets, Mater. Des., 31(1) (2010) 94-103.
[11] S.C. Yoon, A. Krishnaiah, U. Chakkingal, H.S. Kim, Severe plastic deformation and strain localization in groove pressing, Comput. Mater. Sci., 43(4) (2008) 641-645.
[12] F. Roters, D. Raabe, G. Gottstein, Work hardening in heterogeneous alloys-a microstructural approach based on three internal state variables, Acta Mater., 48(17) (2000) 4181-4189.
[13] A. Shirdel, A. Khajeh, M.M. Moshksar, Experimental and finite element investigation of semiconstrained groove ressing process, Mater. Des., 31(2) (2010) 946-950.
[14] A. Krishnaiah, U. Chakkingal, P. Venugopal, Applicability of the groove pressing technique for grain
refinement in commercial purity copper, Mater. Sci. Eng. A, 410-411 (2005) 337-340.
[15] A. Takayama, X. Yang, H. Miura, T. Sakai, Continuous static recrystallization in ultrafinegrained copper processed by multi-directional forging, Mater. Sci. Eng. A, 478(1-2) (2008) 221-228.
[16] Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Mater., 32(1) (1984) 57-70.
[17] Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchetc, A dislocation-based model for all hardeningstages in large strain deformation, Acta Mater., 46(15) (1998) 5509-5522.
[18] F. Nazari, M. Honarpisheh, Analytical model to estimate force of constrained groove pressing process, J. Manuf. Processes, 32 (2018) 11-19.
[19] F. Nazari, M. Honarpisheh, Analytical and experimental investigation of deformation in constrained
groove pressing process, Proceedings of the Institution of Mechanical Engineers, J. Mech. Eng. Sci., 233(11) (2019) 3751-3759.
[20] F. Nazari, M. Honarpisheh, H. Zhao, Effect of stress relief annealing on microstructure, mechanical properties, and residual stress of a copper sheet in the constrained groove pressing process, Int. J. Adv. Manuf. Technol., 102(9-12) (2019) 4361-4370.
[21] M. Lucas, Vibration sensitivity in the design of ultrasonic forming dies, Ultrasonic, 34(1) (1996) 35-
41.
[22] G.S. Schajer, Measurement of non-uniform residual stresses using the hole-drilling method, Part I-Stress calculation procedures, J. Eng. Mater. Technol., 110(4) (1988) 338-343.
[23] M. Sedighi, M. Honarpisheh, Experimental study of through-depth residual stress in explosive welded
Al-Cu-Al multilayer, Mater. Des., 37 (2012) 577-581.
[24] M. Sedighi, M. Honarpisheh, Investigation of cold rolling influence on near surface residual stress distribution in explosive welded multilayer, Strength Mater., 44(6) (2012) 693-698.
[25] M.A. Moazam, M. Honarpisheh, Ring-core integral method to measurement residual stress distribution of Al-7075 alloy processed by cyclic close die forging, Mater. Res. Express, 6(8) (2019) 0865j3.
[26] M.A. Moazam, M. Honarpisheh, Presentation of calibration coefficient to measure Non-uniform
residual stresses by the integral ring-core method, J. Stress Anal., 3(2) (2019) 15-28.
[27] M. Honarpisheh, E. Haghighat, M. Kotobi, Investigation of residual stress and mechanical properties
of equal channel angular rolled St12 strips, Proceedings of the Institution of Mechanical Engineers, J. Mater. Des. Appl., 232(10) (2018) 841-851.
[28] M. Kotobi, M. Honarpisheh, Experimental and numerical investigation of through-thickness residual stress of laser-bent Ti samples, J. Strain Anal. Eng. Des., 52(6) (2017) 347-355.
[29] M. Kotobi, H. Mansouri, M. Honarpisheh, Investigation of laser bending parameters on the residual stress and bending angle of St-Ti bimetal using FEM and neural network, Opt. Laser Technol., 116 (2019) 265-275.
[30] H. Jafari, H. Mansouri, M. Honarpisheh, Investigation of residual stress distribution of dissimilar Al-7075-T6 and Al-6061-T6 in the friction stir welding process strengthened with SiO2 nanoparticles, J. Manuf. Processes, 43(Part A) (2019) 145-153.
[31] M.A. Moazam, M. Honarpisheh, Residual stress formation and distribution due to precipitation
hardening and stress relieving of AA7075, Mater. Res. Express, 6(12) (2019) 126108.
[32] M. Honarpisheh, H. Khanlari, A numerical study on the residual stress measurement accuracy using
inverse eigenstrain method, J. Stress Anal., 2(2) (2018) 1-10.
[33] F. Nazari, M. Honarpisheh, H. Zhao, The effect of microstructure parameters on the residual stresses
in the ultrafine-grained sheets, Micron, 132 (2020) 102843.
[34] M.B. Prime, A.R. Gonzales, The Contour Method: Simple 2D Mapping of Residual Stresses, In 6th International Conference on Residual Stresses, in Sixth International Conference on Residual Stresses, Oxford, UK, (2000).
[35] G. Johnson, Residual stress measurements using the contour method, Ph.D. Dissertation, UK: University of Manchester, (2008).
[36] D.H. Stuart, M.R. Hill, J.C. Newman Jr., Correlation of one-dimensional fatigue crack growth at
cold-expanded holes using linear fracture mechanics and superposition, Eng. Fract. Mech., 78(7) (2011)
1389-1406.
[37] A. Evans, G. Johnson, A. King, P.J. Withers, Characterization of laser peening residual stresses
in Al 7075 by synchrotron diffraction and the contour method, J. Neutron Res., 15(2) (2007) 147-154.
[38] L. Hacini, N. Van Lê, P. Bocher, Evaluation of residual stresses induced by robotized hammer peening by the contour method, Exp. Mech., 49 (2009) 775-783.
[39] V. Richter Trummer, P.M.S.T. De Castro, The through-the-thickness measurement of residual stress in a thick welded steel compact tension specimen by the contour method, J. Strain Anal. Eng. Des., 46(4) (2011) 315-322.
[40] I. Alinaghian, M. Honarpisheh, S. Amini, The influence of bending mode ultrasonic-assisted friction stir welding of Al-6061-T6 alloy on residual stress, welding force and macrostructure, Int. J. Adv. Manuf. Technol., 95(5-8) (2018) 2757-2766.
[41] I. Alinaghian, S. Amini, M. Honarpisheh, Residual stress, tensile strength, and macrostructure investigations on ultrasonic assisted friction stir welding of AA 6061-T6, J. Strain Anal. Eng. Des., 53(7)
(2018) 494-503.
[42] M.B. Prime, A.L. Kastengren, The contour method cutting assumption: Error minimization and correction, Exp. Appl. Mech., 6 (2011) 233-250.
[43] F. Hosseinzadeh, P. Ledgard, P.J. Bouchard, Controlling the cut in contour residual stress measurements of electron beam welded Ti-6Al-4V alloy plates, Exp. Mech., 53(5) (2013) 829-839.