Investigation of Residual Stress in the Ultrasonic Assisted Constraint Groove Pressing Process of Copper Sheets

Document Type : Original Research Paper

Authors

Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran.

Abstract

In this research, Constraint Groove Pressing (CGP) process, which is one of the most important and effective methods of severe plastic deformation processes has been studied. Ultrasonic assisted CGP (UCGP) process has been conducted to investigate and compare the effects of applying ultrasonic vibrations on the residual stress with the conventional method. Contour method was applied to measure the residual stresses distributions in the CGPed and UCGPed samples. Pure copper sheet samples were tested both with and without ultrasonic vibrations up to 2 passes. The measured values of the residual stresses indicated a relative reduction of stress in the presence of
ultrasonic vibrations. By investigation of residual stress normal to the surface in thickness direction, it was observed that residual stresses are compressive on the edge and tensile in the middle of the thickness of the sheet. This reflects the self-balancing feature of residual stresses. In all conditions for both passes, residual stress reduced about 20MPa while using ultrasonic vibrations compared to traditional CGP method.

Keywords


[1] D.H. Shin, J.J. Park, Y.S. Kim, K.T. Park, Constrained groove pressing and its application to grain refinement of aluminum, Mater. Sci. Eng. A, 328(1-2) (2002) 98-103.
[2] A. Krishnaiah, U. Chakkingal, P. Venugopal, Production of ultrafine grain sizes in aluminium sheets
by severe plastic deformation using the technique of groove pressing, Scr. Mater., 52(12) (2005) 1229-1233.
[3] J.W. Lee, J.J. Park, Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement, J. Mater. Process. Technol., 130-131 (2002) 208-213.
[4] J. Alkorta, J.G. Sevillano, Nanomaterials by Severe Plastic Deformation: NANOSPD2, (2002) 491-497.
[5] E. Rafizadeh, A. Mani, M. Kazeminezhad, The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet, Mater. Sci. Eng. A, 515(1-2) (2009) 162-168.
[6] D.H. Shin, K.T. Park, Ultrafine grained steels processed by equal channel angular pressing, Mater. Sci. Eng. A, 410-411 (2005) 299-302.
[7] F. Khodabakhshi, M. Abbaszadeh, S.R. Mohebpour, H. Eskandari, 3D finite element analysis and experimental validation of constrained groove pressing–cross route as an SPD process for sheet form metals, Int. J. Adv. Manuf. Technol., 73(9) (2014) 1291-305.
[8] E. Hosseini, M. Kazeminezhad, Nanostructure and mechanical properties of 0–7 strained aluminum by
CGP: XRD, TEM and tensile test, Mater. Sci. Eng. A, 526(1-2) (2009) 219-224.
[9] F. Khodabakhshi, M. Kazeminezhad, A.H. Kokabi, Constrained groove pressing of low carbon steel:
Nano-structure and mechanical properties, Mater. Sci. Eng. A, 527(16-17) (2010) 4043-4049.
[10] M. Kazeminezhad, E. Hosseini, Optimum groove pressing die design to achieve desirable severely
plastic deformed sheets, Mater. Des., 31(1) (2010) 94-103.
[11] S.C. Yoon, A. Krishnaiah, U. Chakkingal, H.S. Kim, Severe plastic deformation and strain localization in groove pressing, Comput. Mater. Sci., 43(4) (2008) 641-645.
[12] F. Roters, D. Raabe, G. Gottstein, Work hardening in heterogeneous alloys-a microstructural approach based on three internal state variables, Acta Mater., 48(17) (2000) 4181-4189.
[13] A. Shirdel, A. Khajeh, M.M. Moshksar, Experimental and finite element investigation of semiconstrained groove ressing process, Mater. Des., 31(2) (2010) 946-950.
[14] A. Krishnaiah, U. Chakkingal, P. Venugopal, Applicability of the groove pressing technique for grain
refinement in commercial purity copper, Mater. Sci. Eng. A, 410-411 (2005) 337-340.
[15] A. Takayama, X. Yang, H. Miura, T. Sakai, Continuous static recrystallization in ultrafinegrained copper processed by multi-directional forging, Mater. Sci. Eng. A, 478(1-2) (2008) 221-228.
[16] Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Mater., 32(1) (1984) 57-70.
[17] Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchetc, A dislocation-based model for all hardeningstages in large strain deformation, Acta Mater., 46(15) (1998) 5509-5522.
[18] F. Nazari, M. Honarpisheh, Analytical model to estimate force of constrained groove pressing process, J. Manuf. Processes, 32 (2018) 11-19.
[19] F. Nazari, M. Honarpisheh, Analytical and experimental investigation of deformation in constrained
groove pressing process, Proceedings of the Institution of Mechanical Engineers, J. Mech. Eng. Sci., 233(11) (2019) 3751-3759.
[20] F. Nazari, M. Honarpisheh, H. Zhao, Effect of stress relief annealing on microstructure, mechanical properties, and residual stress of a copper sheet in the constrained groove pressing process, Int. J. Adv. Manuf. Technol., 102(9-12) (2019) 4361-4370.
[21] M. Lucas, Vibration sensitivity in the design of ultrasonic forming dies, Ultrasonic, 34(1) (1996) 35-
41.
[22] G.S. Schajer, Measurement of non-uniform residual stresses using the hole-drilling method, Part I-Stress calculation procedures, J. Eng. Mater. Technol., 110(4) (1988) 338-343.
[23] M. Sedighi, M. Honarpisheh, Experimental study of through-depth residual stress in explosive welded
Al-Cu-Al multilayer, Mater. Des., 37 (2012) 577-581.
[24] M. Sedighi, M. Honarpisheh, Investigation of cold rolling influence on near surface residual stress distribution in explosive welded multilayer, Strength Mater., 44(6) (2012) 693-698.
[25] M.A. Moazam, M. Honarpisheh, Ring-core integral method to measurement residual stress distribution of Al-7075 alloy processed by cyclic close die forging, Mater. Res. Express, 6(8) (2019) 0865j3.
[26] M.A. Moazam, M. Honarpisheh, Presentation of calibration coefficient to measure Non-uniform
residual stresses by the integral ring-core method, J. Stress Anal., 3(2) (2019) 15-28.
[27] M. Honarpisheh, E. Haghighat, M. Kotobi, Investigation of residual stress and mechanical properties
of equal channel angular rolled St12 strips, Proceedings of the Institution of Mechanical Engineers, J. Mater. Des. Appl., 232(10) (2018) 841-851.
[28] M. Kotobi, M. Honarpisheh, Experimental and numerical investigation of through-thickness residual stress of laser-bent Ti samples, J. Strain Anal. Eng. Des., 52(6) (2017) 347-355.
[29] M. Kotobi, H. Mansouri, M. Honarpisheh, Investigation of laser bending parameters on the residual stress and bending angle of St-Ti bimetal using FEM and neural network, Opt. Laser Technol., 116 (2019) 265-275.
[30] H. Jafari, H. Mansouri, M. Honarpisheh, Investigation of residual stress distribution of dissimilar Al-7075-T6 and Al-6061-T6 in the friction stir welding process strengthened with SiO2 nanoparticles, J. Manuf. Processes, 43(Part A) (2019) 145-153.
[31] M.A. Moazam, M. Honarpisheh, Residual stress formation and distribution due to precipitation
hardening and stress relieving of AA7075, Mater. Res. Express, 6(12) (2019) 126108.
[32] M. Honarpisheh, H. Khanlari, A numerical study on the residual stress measurement accuracy using
inverse eigenstrain method, J. Stress Anal., 2(2) (2018) 1-10.
[33] F. Nazari, M. Honarpisheh, H. Zhao, The effect of microstructure parameters on the residual stresses
in the ultrafine-grained sheets, Micron, 132 (2020) 102843.
[34] M.B. Prime, A.R. Gonzales, The Contour Method: Simple 2D Mapping of Residual Stresses, In 6th International Conference on Residual Stresses, in Sixth International Conference on Residual Stresses, Oxford, UK, (2000).
[35] G. Johnson, Residual stress measurements using the contour method, Ph.D. Dissertation, UK: University of Manchester, (2008).
[36] D.H. Stuart, M.R. Hill, J.C. Newman Jr., Correlation of one-dimensional fatigue crack growth at
cold-expanded holes using linear fracture mechanics and superposition, Eng. Fract. Mech., 78(7) (2011)
1389-1406.
[37] A. Evans, G. Johnson, A. King, P.J. Withers, Characterization of laser peening residual stresses
in Al 7075 by synchrotron diffraction and the contour method, J. Neutron Res., 15(2) (2007) 147-154.
[38] L. Hacini, N. Van Lê, P. Bocher, Evaluation of residual stresses induced by robotized hammer peening by the contour method, Exp. Mech., 49 (2009) 775-783.
[39] V. Richter Trummer, P.M.S.T. De Castro, The through-the-thickness measurement of residual stress in a thick welded steel compact tension specimen by the contour method, J. Strain Anal. Eng. Des., 46(4) (2011) 315-322.
[40] I. Alinaghian, M. Honarpisheh, S. Amini, The influence of bending mode ultrasonic-assisted friction stir welding of Al-6061-T6 alloy on residual stress, welding force and macrostructure, Int. J. Adv. Manuf. Technol., 95(5-8) (2018) 2757-2766.
[41] I. Alinaghian, S. Amini, M. Honarpisheh, Residual stress, tensile strength, and macrostructure investigations on ultrasonic assisted friction stir welding of AA 6061-T6, J. Strain Anal. Eng. Des., 53(7)
(2018) 494-503.
[42] M.B. Prime, A.L. Kastengren, The contour method cutting assumption: Error minimization and correction, Exp. Appl. Mech., 6 (2011) 233-250.
[43] F. Hosseinzadeh, P. Ledgard, P.J. Bouchard, Controlling the cut in contour residual stress measurements of electron beam welded Ti-6Al-4V alloy plates, Exp. Mech., 53(5) (2013) 829-839.