[1] M. Hassanzadeh, Computation of shape design sensitivities for linear FEM using modified semianalytical method, Modares Mechanical Engineering, 15(11) (2016) 73-80.
[2] S. Karimi, J. Jafari Fesharaki, Using topology optimization to reduce stress concentration factor in a plate with a hole, J. Stress Anal., 3(2) (2019) 109-116.
[3] H.R. Ghaffarianjam, M.H. Abolbashari, Performance of the evolutionary structural optimizationbased approaches with different criteria in the shape optimization of beams, Finite Elem. Anal. Des., 46(4) (2010) 348-356.
[4] H.R. Ghaffarianjam, M.H. Abolbashari, A. Farshidianfar, Quantitative verification of the morphing evolutionary structural optimization method for some benchmark problems using a new performance index, Scientia Iranica, 18(3B) (2011) 383-392.
[5] F. Keulen van, R.T. Haftka, N.H. Kim, Review of options for structural design sensitivity analysis, Part 1: Linear systems, Comput. Methods Appl. Mech. Eng., 194(30-33) (2005) 3213-3243.
[6] M. Hassanzadeh, M. Mazare, Computation of design sensitivities in steady-state incompressible laminar flows based on new semi-analytical method, J. Sci. Comput., 83(12) (2020), DOI:10.1007/s10915-020-01205-0.
[7] S. Kim, J. Ryu, M. Cho, Numerically generated tangent stiffness matrices using the complex variable derivative method for nonlinear structural analysis, Comput. Methods Appl. Mech. Eng., 200(1) (2011) 403-413.
[8] J.N. Lyness, C.B. Moler, Numerical differentiation of analytic functions, SIAM J. Numer. Anal., 4(2) (1967) 202-210.
[9] J.N. Lyness, Numerical algorithms based on the theory of complex variable, Proceedings of the 1967 22nd national conference, Newyork, United States, (1967).
[10] W. Squire, G. Trapp, Using complex variables to estimate derivatives of real functions, SIAM Review, 40(1) (1998) 110-112.
[11] J.R.R.A. Martins, I.M. Kroo, J.J. Alonso, An automated method for sensitivity analysis using complex variables, AIAA Journal., 689 (2000) 2000.
[12] W.K. Anderson, J.C. Newman, D.L. Whitfield, E.J. Nielsen, Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables, AIAA Journal., A99-33501 (1999) 381-389.
[13] B.P. Wang, A.P. Apte, Complex variable method for eigensolution sensitivity analysis, AIAA Journal., 44(12) (2006) 2958-2961.
[14] J.F. Wang, Y.M. Cheng, A new complex variable meshless method for transient heat conduction problems, Chin. Phys. B, 21(12) (2012) 120206.
[15] H. Cheng, M.J. Peng, Y.M. Cheng, A hybrid improved complex variable element-free Galerkin method for three-dimensional potential problems, Eng. Anal. Boundary Elem., 84 (2017) 52-62.
[16] M. Sheikhi Azqandi, M. Hassanzadeh, Computation of shape design sensitivities on thermo-elastic problems using modified semi-analytical method, J. Mech. Eng. Sci., 48(3) (2018) 157-166.
[17] R.T. Haftka, Techniques for thermal sensitivity analysis, Int. J. Numer. Methods Eng., 17(1) (1981) 71-80.
[18] K. Dems, Sensitivity analysis in thermal problems–II: structural shape variation, J. Therm. Stresses, 10(1) (1987) 1-16.
[19] C.W. Park, Y.M. Yoo, Shape design sensitivity analysis of a two-dimensional heat transfer system using analysis of a two-dimensional heat transfer system using the boundary element method, Comput. Struct., 28 (1998) 543-550.
[20] D.A. Tortorelli, R.B. Haber, S.C.Y. Lu, Design sensitivity analysis for nonlinear thermal systems, Comput. Methods Appl. Mech. Eng., 77(1-2) (1989) 61-77.
[21] M. Hassanzadeh, S. Kashani, Computation of first and second-order sensitivities for steady state incompressible laminar flow using extended complex variables method, Modares Mechanical Engineering, 19(1) (2019) 237-246.
[22] R.T. Haftka, D.S. Malkus, Calculation of sensitivity derivatives in thermal problems by finite differences, Int. J. Numer. Methods Eng., 17(12) (1981) 1811-1821.
[23] R.A. Meric, Shape design sensitivity analysis for nonlinear anisotropic heat conducting solids and shape optimization by the BEM, Int. J. Numer. Methods Eng., 26(1) (1988) 109-120.
[24] D.A. Tortorelli, Sensitivity analysis for nonālinear constrained elastostatic systems, Int. J. Numer. Methods Eng., 33(8) (1992) 1643-1660.
[25] B. Chen, L. Tong, Sensitivity analysis of heat conduction for functionally graded materials, Mater. Des., 25(8) (2004) 663-672.
[26] F. Fernandez, D.A. Tortorelli, Semi-analytical sensitivity analysis for nonlinear transient problems, Struct. Multidiscip. Optim., 58(6) (2018) 2387-2410.
[27] K. Furuta, A. Sato, K. Izui, M. Matsumoto, T. Yamada, Sh. Nishiwaki, Shape sensitivity for a two-phase heat conduction problem considering nanoscale effects, J. Adv. Mech. Des. Sys. Manuf., 12(1) (2018) JAMDSM0003.
[28] B.Y. Lee, Design sensitivity analysis and optimization of interface shape for zonedinhomogeneous thermal conduction problems using boundary integral formulation, Eng. Anal. Boundary Elem., 34(10) (2010) 825-833.
[29] A.S. Silva, E. Ghisi, Estimating the sensitivity of design variables in the thermal and energy performance of buildings through a systematic procedure, J. Cleaner Prod., 244 (2020) 118753.
[30] R.J. Yang, Shape design sensitivity analysis of thermoelectricity problems, Comput. Methods Appl. Mech. Eng., 102(1) (1993) 41-60.
[31] I. Koutromanos, Fundamentals of Finite Element Analysis: Linear Finite Element Analysis, Wiley, (2018).
[32] J. Holman, Heat Transfer 10th Edition, New York, Boston, McGraw-Hill, Inc, (2009).