Calculation of Design Shape Sensitivity in Solid Mechanics Through a Novel Hybrid Method Using CVM and DSM

Document Type : Original Research Paper


1 Mechanical Engineering Department, Bozorgmehr University of Qaenat, Qaen, Iran.

2 Mechanical Engineering Department, Gorgan Branch, Islamic Azad University, Gorgan, Iran.


In this study, a novel hybrid method was presented by considering the strengths and weaknesses of the two methods of the direct sensitivity method (DSM) and the complex variables method (CVM) and combining them to calculate shape sensitivity. The most of methods available are highly dependent on the values of step size variation related to the type of the problem. To validate the proposed method, some examples were analyzed by using the written finite element code. The comparison of results at solved problems indicated the independency of the proposed method from step size and only need to select an arbitrary small step size and the rounding error is negligible. It is a sign of its high computational performance which converges to reliable, stable, and high-precision results and saves calculation time compared to the other methods. The other advantages of the proposed method are the low volume of occupied memory and simplicity of implementation and its application in a wide range of engineering problems having simple and complicated equations.


[1] M. Hassanzadeh, Computation of shape design sensitivities for linear FEM using modified semianalytical method, Modares Mechanical Engineering, 15(11) (2016) 73-80.
[2] S. Karimi, J. Jafari Fesharaki, Using topology optimization to reduce stress concentration factor in a plate with a hole, J. Stress Anal., 3(2) (2019) 109-116.
[3] H.R. Ghaffarianjam, M.H. Abolbashari, Performance of the evolutionary structural optimizationbased approaches with different criteria in the shape optimization of beams, Finite Elem. Anal. Des., 46(4) (2010) 348-356.
[4] H.R. Ghaffarianjam, M.H. Abolbashari, A. Farshidianfar, Quantitative verification of the morphing evolutionary structural optimization method for some benchmark problems using a new performance index, Scientia Iranica, 18(3B) (2011) 383-392.
[5] F. Keulen van, R.T. Haftka, N.H. Kim, Review of options for structural design sensitivity analysis, Part 1: Linear systems, Comput. Methods Appl. Mech. Eng., 194(30-33) (2005) 3213-3243.
[6] M. Hassanzadeh, M. Mazare, Computation of design sensitivities in steady-state incompressible laminar flows based on new semi-analytical method, J. Sci. Comput., 83(12) (2020), DOI:10.1007/s10915-020-01205-0.
[7] S. Kim, J. Ryu, M. Cho, Numerically generated tangent stiffness matrices using the complex variable derivative method for nonlinear structural analysis, Comput. Methods Appl. Mech. Eng., 200(1) (2011) 403-413.
[8] J.N. Lyness, C.B. Moler, Numerical differentiation of analytic functions, SIAM J. Numer. Anal., 4(2) (1967) 202-210.
[9] J.N. Lyness, Numerical algorithms based on the theory of complex variable, Proceedings of the 1967 22nd national conference, Newyork, United States, (1967).
[10] W. Squire, G. Trapp, Using complex variables to estimate derivatives of real functions, SIAM Review, 40(1) (1998) 110-112.
[11] J.R.R.A. Martins, I.M. Kroo, J.J. Alonso, An automated method for sensitivity analysis using complex variables, AIAA Journal., 689 (2000) 2000.
[12] W.K. Anderson, J.C. Newman, D.L. Whitfield, E.J. Nielsen, Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables, AIAA Journal., A99-33501 (1999) 381-389.
[13] B.P. Wang, A.P. Apte, Complex variable method for eigensolution sensitivity analysis, AIAA Journal., 44(12) (2006) 2958-2961.
[14] J.F. Wang, Y.M. Cheng, A new complex variable meshless method for transient heat conduction problems, Chin. Phys. B, 21(12) (2012) 120206.
[15] H. Cheng, M.J. Peng, Y.M. Cheng, A hybrid improved complex variable element-free Galerkin method for three-dimensional potential problems, Eng. Anal. Boundary Elem., 84 (2017) 52-62.
[16] M. Sheikhi Azqandi, M. Hassanzadeh, Computation of shape design sensitivities on thermo-elastic problems using modified semi-analytical method, J. Mech. Eng. Sci., 48(3) (2018) 157-166.
[17] R.T. Haftka, Techniques for thermal sensitivity analysis, Int. J. Numer. Methods Eng., 17(1) (1981) 71-80.
[18] K. Dems, Sensitivity analysis in thermal problems–II: structural shape variation, J. Therm. Stresses, 10(1) (1987) 1-16.
[19] C.W. Park, Y.M. Yoo, Shape design sensitivity analysis of a two-dimensional heat transfer system using analysis of a two-dimensional heat transfer system using the boundary element method, Comput. Struct., 28 (1998) 543-550.
[20] D.A. Tortorelli, R.B. Haber, S.C.Y. Lu, Design sensitivity analysis for nonlinear thermal systems, Comput. Methods Appl. Mech. Eng., 77(1-2) (1989) 61-77.
[21] M. Hassanzadeh, S. Kashani, Computation of first and second-order sensitivities for steady state incompressible laminar flow using extended complex variables method, Modares Mechanical Engineering, 19(1) (2019) 237-246.
[22] R.T. Haftka, D.S. Malkus, Calculation of sensitivity derivatives in thermal problems by finite differences, Int. J. Numer. Methods Eng., 17(12) (1981) 1811-1821.
[23] R.A. Meric, Shape design sensitivity analysis for nonlinear anisotropic heat conducting solids and shape optimization by the BEM, Int. J. Numer. Methods Eng., 26(1) (1988) 109-120.
[24] D.A. Tortorelli, Sensitivity analysis for nonā€linear constrained elastostatic systems, Int. J. Numer. Methods Eng., 33(8) (1992) 1643-1660.
[25] B. Chen, L. Tong, Sensitivity analysis of heat conduction for functionally graded materials, Mater. Des., 25(8) (2004) 663-672.
[26] F. Fernandez, D.A. Tortorelli, Semi-analytical sensitivity analysis for nonlinear transient problems, Struct. Multidiscip. Optim., 58(6) (2018) 2387-2410.
[27] K. Furuta, A. Sato, K. Izui, M. Matsumoto, T. Yamada, Sh. Nishiwaki, Shape sensitivity for a two-phase heat conduction problem considering nanoscale effects, J. Adv. Mech. Des. Sys. Manuf., 12(1) (2018) JAMDSM0003.
[28] B.Y. Lee, Design sensitivity analysis and optimization of interface shape for zonedinhomogeneous thermal conduction problems using boundary integral formulation, Eng. Anal. Boundary Elem., 34(10) (2010) 825-833.
[29] A.S. Silva, E. Ghisi, Estimating the sensitivity of design variables in the thermal and energy performance of buildings through a systematic procedure, J. Cleaner Prod., 244 (2020) 118753.
[30] R.J. Yang, Shape design sensitivity analysis of thermoelectricity problems, Comput. Methods Appl. Mech. Eng., 102(1) (1993) 41-60.
[31] I. Koutromanos, Fundamentals of Finite Element Analysis: Linear Finite Element Analysis, Wiley, (2018).
[32] J. Holman, Heat Transfer 10th Edition, New York, Boston, McGraw-Hill, Inc, (2009).