Fracture Toughness of Warm Mix Asphalts Containing Reclaimed Asphalt Pavement

Document Type : Original Research Paper


1 Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.

2 Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

3 Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran.


This paper deals with the fracture toughness of three different asphalt mixtures of HMA (Hot Mix Asphalt), WMA (Warm Mix Asphalt) and WMA-RAP (i.e. mixture of WMA and reclaimed asphalt pavement). Fracture tests were performed on SCB (Semi-Circular Bend) specimens to obtain the fracture properties (i.e. fracture toughness and fracture energy) of asphalt mixtures under three different modes of loading (i.e. pure mode I, pure mode II and mixed mode I/II) at the two test temperatures of −15◦C and 25◦C. The results exhibit that the WMA (i.e. WMA and WMA-RAP) mixtures provide greater fracture toughness than the HMA one under any mode of loading and temperature conditions; however, the WMA-RAP shows the highest fracture toughness. Furthermore, the fracture energies of the WMA and WMA-RAP mixtures are higher than the HMA mixture; however, the WMA mixture demonstrates the greatest value of fracture energy compared to other mixtures. Both the fracture toughness and fracture energy of the mixtures at −15◦C are also found to be higher than those at 25◦C.


[1] S. Pirmohammad, M.R. Ayatollahi, Fracture Behavior of Asphalt Materials, 1 ed., Springer International Publishing, (2020).
[2] C. Hettiarachchi, X. Hou, J. Wang, F. Xiao, A comprehensive review on the utilization of reclaimed asphalt material with warm mix asphalt technology, Constr. Build. Mater., 227 (2019) 117096.
[3] M. Sabouri, T. Bennert, J. Sias Daniel, Y. Richard Kim, A comprehensive evaluation of the fatigue behaviour of plant-produced RAP mixtures, Road Mater. Pavement Des., 16(sup 2) (2015) 29-54.
[4] B. Golchin, A. Mansourian, Evaluation of fatigue properties of asphalt mixtures containing reclaimed asphalt using response surface method, Int. J. Transp. Eng., 4(4) (2017) 335-350.
[5] P.C. Boriack, S.W. Katicha, G.W. Flintsch, C.R. Tomlinson, Laboratory evaluation of asphalt concrete mixtures containing high contents of reclaimed asphalt pavement (RAP) and binder, Virginia Center for Transportation Innovation and Research, (2014).
[6] D. Vukosavljevic, Fatigue characteristics of field HMA surface mixtures containing recycled asphalt pavement (RAP), MSc Thesis, Civil Engineering Department, Tennessee: University of Tennessee, (2006).
[7] U.A. Mannan, M.R. Islam, R.A. Tarefder, Effects of recycled asphalt pavements on the fatigue life of asphalt under different strain levels and loading frequencies, Int. J. Fatigue, 78 (2015) 72-80.
[8] S. Mangiafico, C. Sauzéat, H. Di Benedetto, S. Pouget, F. Olard, L. Planque, R. Van Rooijen, Statistical analysis of influence of mix design parameters on mechanical properties of mixes with reclaimed asphalt pavement, Transp. Res. Rec., 2445(1) (2014) 29-38.
[9] N. Guo, Z. You, Y. Tan, Y. Zhao, Performance evaluation of warm mix asphalt containing reclaimed asphalt mixtures, Int. J. Pavement Eng., 18(11) (2017) 981-989.
[10] D.X. Lu, M. Saleh, Laboratory evaluation of warm mix asphalt incorporating high RAP proportion by using evotherm and sylvaroad additives, Constr. Build. Mater., 114 (2016) 580-587.
[11] M. Fakhri, A. Ahmadi, Evaluation of fracture resistance of asphalt mixes involving steel slag and RAP: Susceptibility to aging level and freeze and thaw cycles, Constr. Build. Mater., 157 (2017) 748-756.
[12] A. Behroozikhah, S.H. Morafa, S. Aflaki, Investigation of fatigue cracks on RAP mixtures containing Sasobit and crumb rubber based on fracture energy, Constr. Build. Mater., 141 (2017) 526-532.
[13] B. Behnia, S. Ahmed, E.V. Dave, W.G. Buttlar, Fracture Characterization of Asphalt Mixtures with Reclaimed Asphalt Pavement, Int. J. Pavement Res. Technol., 3(2) (2010) 72-78.
[14] M. Mubaraki, S.A. Osman, H.E.M. Sallam, Effect of RAP content on flexural behavior and fracture toughness of flexible pavement, Lat. Am. J. Solids Stru., 16(3) (2019) e177.
[15] B. Huang, Z. Zhang, W. Kingery, G. Zuo, Fatigue crack characteristics of HMA mixtures containing RAP, Proceeding 5th Int. Conf. on Cracking in Pavements, RILEM, Limoges, France, (2004) 631-638.
[16] H. Ziari, A. Amini, A. Moniri, M. Habibpour, Using the GMDH and ANFIS methods for predicting the crack resistance of fibre reinforced high RAP asphalt mixtures, Road Mater. Pavement Des., (2020), DOI: 10.1080/14680629.2020.1748693.
[17] X.J. Li, M.O. Marasteanu, Using semi circular bending test to evaluate low temperature fracture resistance for asphalt concrete, Exp. Mech., 50(7) (2010) 867-876.
[18] S. Pirmohammad, M.R. Ayatollahi, Fracture resistance of asphalt concrete under different loading modes and temperature conditions, Constr. Build. Mater., 53 (2014) 235-242.
[19] S. Pirmohammad, H. Khoramishad, M.R. Ayatollahi, Effects of asphalt concrete characteristics on cohesive zone model parameters of hot mix asphalt mixtures, Can. J. Civ. Eng., 43(3) (2016) 226-232.
[20] S. Pirmohammad, H. Shabani, Mixed mode I/II fracture strength of modified HMA concretes subjected to different temperature conditions, J. Test. Eval., 47(5) (2019) 3355-3371.
[21] S. Pirmohammad, A. Bayat, Fracture resistance of HMA mixtures under mixed mode I/III loading at different subzero temperatures, Int. J. Solids Struct., 120 (2017) 268-277.
[22] M.R.M. Aliha, H. Fazaeli, S. Aghajani, F. Moghadas Nejad, Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures, Constr. Build. Mater., 95 (2015) 545-555.
[23] M.R.M. Aliha, On predicting mode II fracture toughness (KIIc) of hot mix asphalt mixtures using the strain energy density criterion, Theor. Appl. Fract. Mech., 99 (2019) 36-43.
[24] A. Razmi, M. Mirsayar, Fracture resistance of asphalt concrete modified with crumb rubber at low temperatures, Int. J. Pavement Res. Technol., 11(3) (2018) 265-273.
[25] S. Pirmohammad, Y. Majd-Shokorlou, B. Amani, Experimental investigation of fracture properties of asphalt mixtures modified with Nano Fe2O3 and carbon nanotubes, Road Mater. Pavement Des., 21(8) (2020) 2321-2343.
[26] S. Pirmohammad, Y. Majd-Shokorlou, B. Amani, Fracture resistance of HMA mixtures modified with nanoclay and Nano-Al2O3, J. Test. Eval., 47(5) (2019) 3289-3308.
[27] H. Ziari, H. Farahani, A. Goli, S. Sadeghpour Galooyak, The investigation of the impact of carbon nano tube on bitumen and HMA performance, Pet. Sci. Technol., 32(17) (2014) 2102-2108.
[28] A. Mansourian, A. Razmi, M. Razavi, Evaluation of fracture resistance of warm mix asphalt containing jute fibers, Constr. Build. Mater., 117 (2016) 37-46.
[29] M.R.M. Aliha, A. Razmi, A. Mansourian, The influence of natural and synthetic fibers on low temperature mixed mode I+ II fracture behavior of warm mix asphalt (WMA) materials, Eng. Fract. Mech., 182 (2017) 322-336.
[30] S. Pirmohammad, Y. Majd Shokorlou, B. Amani, Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers, Eng. Fract. Mech., 226 (2020) 106875.
[31] S. Pirmohammad, Y. Majd Shokorlou, B. Amani, Influence of natural fibers (kenaf and goat wool) on mixed mode I/II fracture strength of asphalt mixtures, Constr. Build. Mater., 239 (2020) 117850.
[32] M. Ameri, H. Ziari, A. Yousefi, A. Behnood, Moisture susceptibility of asphalt mixtures: A thermodynamic evaluation of the effects of anti-stripping additives, J. Mater. Civ. Eng., In Press (2020).
[33] ASTM D2172, Standard Test Methods for Quantitative Extraction of Asphalt Binder from Asphalt Mixtures, ASTM International, West Conshohocken, PA, USA, (2017).
[34] ASTM D5404/D5404M-12, Standard Practice for Recovery of Asphalt from Solution Using the Rotary Evaporator, ASTM International, West Conshohocken, PA, USA, (2017).
[35] M. Wagoner, W.G. Buttlar, G. Paulino, Diskshaped compact tension test for asphalt concrete fracture, Exp. Mech., 45(3) (2005) 270-277.
[36] M. Wagoner, W. Buttlar, G. Paulino, P. Blankenship, Investigation of the fracture resistance of hotmix asphalt concrete using a disk-shaped compact tension test, Transp. Res. Rec. Transp. Res. Rec., (1929) (2005) 183-192.
[37] B. Mobasher, M.S. Mamlouk, H.M. Lin, Evaluation of crack propagation properties of asphalt mixtures, J. Transp. Eng., 123(5) (1997) 405-413.
[38] K.W. Kim, Y.S. Doh, S. Lim, Mode I reflection cracking resistance of strengthened asphalt concretes, Constr. Build. Mater., 13(5) (1999) 243-251.
[39] J. Molenaar, X. Liu, A. Molenaar, Resistance to crack-growth and fracture of asphalt mixture, 6th International RILEM Symposium, Zurich, Switzeland, 14-16 April, (2003).
[40] I. Artamendi, H.A. Khalid, A comparison between beam and semi-circular bending fracture tests for asphalt, Road Mater. Pavement Des., 7(sup1) (2006) 163-180.
[41] M.R. Ayatollahi, S. Pirmohammad, Temperature effects on brittle fracture in cracked asphalt concretes, Struct. Eng. Mech., 45(1) (2013) 19-32.
[42] M.R.M. Aliha, H. Behbahani, H. Fazaeli, M.H. Rezaifar, Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures, Constr. Build. Mater., 54 (2014) 623-635.
[43] M.R. Ayatollahi, M.R.M. Aliha, H. Saghafi, An improved semi-circular bend specimen for investigating mixed mode brittle fracture, Eng. Fract. Mech., 78(1) (2011) 110-123.
[44] M. Ameri, A. Mansourian, S. Pirmohammad, M.R.M. Aliha, M.R. Ayatollahi, Mixed mode fracture resistance of asphalt concrete mixtures, Eng. Fract. Mech., 93 (2012) 153-167.
[45] D. Timm, B. Birgisson, D. Newcomb, Development of mechanistic-empirical pavement design in Minnesota, Transp. Res. Rec. Transp. Res. Rec., 1629(1) (1998) 181-188.
[46] R.D. Recommendation, Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams, Mater. Struct., 18(106) (1985) 285-290.
[47] X. Li, A.F. Braham, M.O. Marasteanu, W.G. Buttlar, R.C. Williams, Effect of factors affecting fracture energy of asphalt concrete at low temperature, Road Mater. Pavement Des., 9(sup1) (2008) 397-416.
[48] A.F. Braham, W.G. Buttlar, M.O. Marasteanu, Effect of binder type, aggregate, and mixture composition on fracture energy of hot-mix asphalt in cold climates, Transp. Res. Rec., 2001(1) (2007) 102-109.
[49] S.H. Khanghahi, A. Tortum, Determination of the optimum conditions for gilsonite and glass fiber in HMA under mixed mode I/III loading in fracture tests, J. Mater. Civ. Eng., 30(7) (2018) 04018130.
[50] S. Sobhi, A. Yousefi, A. Behnood, The effects of Gilsonite and Sasobit on the mechanical properties and durability of asphalt mixtures, Constr. Build. Mater., 238 (2020) 117676.
[51] H. Fazaeli, Y. Samin, A. Pirnoun, A.S. Dabiri, Laboratory and field evaluation of the warm fiber reinforced high performance asphalt mixtures (case study Karaj–Chaloos Road), Constr. Build. Mater., 122 (2016) 273-283.
[52] S. Pirmohammad, A. Kiani, Effect of temperature variations on fracture resistance of HMA mixtures under different loading modes, Mater. Struct., 49(9) (2016) 3773-3784.
[53] K.W. Kim, S.J. Kweon, Y.S. Doh, T.S. Park, Fracture toughness of polymer-modified asphalt concrete at low temperatures, Can. J. Civ. Eng., 30(2) (2003) 406-413.