[1] S. Pirmohammad, M.R. Ayatollahi, Fracture Behavior of Asphalt Materials, 1 ed., Springer International Publishing, (2020).
[2] C. Hettiarachchi, X. Hou, J. Wang, F. Xiao, A comprehensive review on the utilization of reclaimed asphalt material with warm mix asphalt technology, Constr. Build. Mater., 227 (2019) 117096.
[3] M. Sabouri, T. Bennert, J. Sias Daniel, Y. Richard Kim, A comprehensive evaluation of the fatigue behaviour of plant-produced RAP mixtures, Road Mater. Pavement Des., 16(sup 2) (2015) 29-54.
[4] B. Golchin, A. Mansourian, Evaluation of fatigue properties of asphalt mixtures containing reclaimed asphalt using response surface method, Int. J. Transp. Eng., 4(4) (2017) 335-350.
[5] P.C. Boriack, S.W. Katicha, G.W. Flintsch, C.R. Tomlinson, Laboratory evaluation of asphalt concrete mixtures containing high contents of reclaimed asphalt pavement (RAP) and binder, Virginia Center for Transportation Innovation and Research, (2014).
[6] D. Vukosavljevic, Fatigue characteristics of field HMA surface mixtures containing recycled asphalt pavement (RAP), MSc Thesis, Civil Engineering Department, Tennessee: University of Tennessee, (2006).
[7] U.A. Mannan, M.R. Islam, R.A. Tarefder, Effects of recycled asphalt pavements on the fatigue life of asphalt under different strain levels and loading frequencies, Int. J. Fatigue, 78 (2015) 72-80.
[8] S. Mangiafico, C. Sauzéat, H. Di Benedetto, S. Pouget, F. Olard, L. Planque, R. Van Rooijen, Statistical analysis of influence of mix design parameters on mechanical properties of mixes with reclaimed asphalt pavement, Transp. Res. Rec., 2445(1) (2014) 29-38.
[9] N. Guo, Z. You, Y. Tan, Y. Zhao, Performance evaluation of warm mix asphalt containing reclaimed asphalt mixtures, Int. J. Pavement Eng., 18(11) (2017) 981-989.
[10] D.X. Lu, M. Saleh, Laboratory evaluation of warm mix asphalt incorporating high RAP proportion by using evotherm and sylvaroad additives, Constr. Build. Mater., 114 (2016) 580-587.
[11] M. Fakhri, A. Ahmadi, Evaluation of fracture resistance of asphalt mixes involving steel slag and RAP: Susceptibility to aging level and freeze and thaw cycles, Constr. Build. Mater., 157 (2017) 748-756.
[12] A. Behroozikhah, S.H. Morafa, S. Aflaki, Investigation of fatigue cracks on RAP mixtures containing Sasobit and crumb rubber based on fracture energy, Constr. Build. Mater., 141 (2017) 526-532.
[13] B. Behnia, S. Ahmed, E.V. Dave, W.G. Buttlar, Fracture Characterization of Asphalt Mixtures with Reclaimed Asphalt Pavement, Int. J. Pavement Res. Technol., 3(2) (2010) 72-78.
[14] M. Mubaraki, S.A. Osman, H.E.M. Sallam, Effect of RAP content on flexural behavior and fracture toughness of flexible pavement, Lat. Am. J. Solids Stru., 16(3) (2019) e177.
[15] B. Huang, Z. Zhang, W. Kingery, G. Zuo, Fatigue crack characteristics of HMA mixtures containing RAP, Proceeding 5th Int. Conf. on Cracking in Pavements, RILEM, Limoges, France, (2004) 631-638.
[16] H. Ziari, A. Amini, A. Moniri, M. Habibpour, Using the GMDH and ANFIS methods for predicting the crack resistance of fibre reinforced high RAP asphalt mixtures, Road Mater. Pavement Des., (2020), DOI: 10.1080/14680629.2020.1748693.
[17] X.J. Li, M.O. Marasteanu, Using semi circular bending test to evaluate low temperature fracture resistance for asphalt concrete, Exp. Mech., 50(7) (2010) 867-876.
[18] S. Pirmohammad, M.R. Ayatollahi, Fracture resistance of asphalt concrete under different loading modes and temperature conditions, Constr. Build. Mater., 53 (2014) 235-242.
[19] S. Pirmohammad, H. Khoramishad, M.R. Ayatollahi, Effects of asphalt concrete characteristics on cohesive zone model parameters of hot mix asphalt mixtures, Can. J. Civ. Eng., 43(3) (2016) 226-232.
[20] S. Pirmohammad, H. Shabani, Mixed mode I/II fracture strength of modified HMA concretes subjected to different temperature conditions, J. Test. Eval., 47(5) (2019) 3355-3371.
[21] S. Pirmohammad, A. Bayat, Fracture resistance of HMA mixtures under mixed mode I/III loading at different subzero temperatures, Int. J. Solids Struct., 120 (2017) 268-277.
[22] M.R.M. Aliha, H. Fazaeli, S. Aghajani, F. Moghadas Nejad, Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures, Constr. Build. Mater., 95 (2015) 545-555.
[23] M.R.M. Aliha, On predicting mode II fracture toughness (KIIc) of hot mix asphalt mixtures using the strain energy density criterion, Theor. Appl. Fract. Mech., 99 (2019) 36-43.
[24] A. Razmi, M. Mirsayar, Fracture resistance of asphalt concrete modified with crumb rubber at low temperatures, Int. J. Pavement Res. Technol., 11(3) (2018) 265-273.
[25] S. Pirmohammad, Y. Majd-Shokorlou, B. Amani, Experimental investigation of fracture properties of asphalt mixtures modified with Nano Fe2O3 and carbon nanotubes, Road Mater. Pavement Des., 21(8) (2020) 2321-2343.
[26] S. Pirmohammad, Y. Majd-Shokorlou, B. Amani, Fracture resistance of HMA mixtures modified with nanoclay and Nano-Al2O3, J. Test. Eval., 47(5) (2019) 3289-3308.
[27] H. Ziari, H. Farahani, A. Goli, S. Sadeghpour Galooyak, The investigation of the impact of carbon nano tube on bitumen and HMA performance, Pet. Sci. Technol., 32(17) (2014) 2102-2108.
[28] A. Mansourian, A. Razmi, M. Razavi, Evaluation of fracture resistance of warm mix asphalt containing jute fibers, Constr. Build. Mater., 117 (2016) 37-46.
[29] M.R.M. Aliha, A. Razmi, A. Mansourian, The influence of natural and synthetic fibers on low temperature mixed mode I+ II fracture behavior of warm mix asphalt (WMA) materials, Eng. Fract. Mech., 182 (2017) 322-336.
[30] S. Pirmohammad, Y. Majd Shokorlou, B. Amani, Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers, Eng. Fract. Mech., 226 (2020) 106875.
[31] S. Pirmohammad, Y. Majd Shokorlou, B. Amani, Influence of natural fibers (kenaf and goat wool) on mixed mode I/II fracture strength of asphalt mixtures, Constr. Build. Mater., 239 (2020) 117850.
[32] M. Ameri, H. Ziari, A. Yousefi, A. Behnood, Moisture susceptibility of asphalt mixtures: A thermodynamic evaluation of the effects of anti-stripping additives, J. Mater. Civ. Eng., In Press (2020).
[33] ASTM D2172, Standard Test Methods for Quantitative Extraction of Asphalt Binder from Asphalt Mixtures, ASTM International, West Conshohocken, PA, USA, (2017).
[34] ASTM D5404/D5404M-12, Standard Practice for Recovery of Asphalt from Solution Using the Rotary Evaporator, ASTM International, West Conshohocken, PA, USA, (2017).
[35] M. Wagoner, W.G. Buttlar, G. Paulino, Diskshaped compact tension test for asphalt concrete fracture, Exp. Mech., 45(3) (2005) 270-277.
[36] M. Wagoner, W. Buttlar, G. Paulino, P. Blankenship, Investigation of the fracture resistance of hotmix asphalt concrete using a disk-shaped compact tension test, Transp. Res. Rec. Transp. Res. Rec., (1929) (2005) 183-192.
[37] B. Mobasher, M.S. Mamlouk, H.M. Lin, Evaluation of crack propagation properties of asphalt mixtures, J. Transp. Eng., 123(5) (1997) 405-413.
[38] K.W. Kim, Y.S. Doh, S. Lim, Mode I reflection cracking resistance of strengthened asphalt concretes, Constr. Build. Mater., 13(5) (1999) 243-251.
[39] J. Molenaar, X. Liu, A. Molenaar, Resistance to crack-growth and fracture of asphalt mixture, 6th International RILEM Symposium, Zurich, Switzeland, 14-16 April, (2003).
[40] I. Artamendi, H.A. Khalid, A comparison between beam and semi-circular bending fracture tests for asphalt, Road Mater. Pavement Des., 7(sup1) (2006) 163-180.
[41] M.R. Ayatollahi, S. Pirmohammad, Temperature effects on brittle fracture in cracked asphalt concretes, Struct. Eng. Mech., 45(1) (2013) 19-32.
[42] M.R.M. Aliha, H. Behbahani, H. Fazaeli, M.H. Rezaifar, Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures, Constr. Build. Mater., 54 (2014) 623-635.
[43] M.R. Ayatollahi, M.R.M. Aliha, H. Saghafi, An improved semi-circular bend specimen for investigating mixed mode brittle fracture, Eng. Fract. Mech., 78(1) (2011) 110-123.
[44] M. Ameri, A. Mansourian, S. Pirmohammad, M.R.M. Aliha, M.R. Ayatollahi, Mixed mode fracture resistance of asphalt concrete mixtures, Eng. Fract. Mech., 93 (2012) 153-167.
[45] D. Timm, B. Birgisson, D. Newcomb, Development of mechanistic-empirical pavement design in Minnesota, Transp. Res. Rec. Transp. Res. Rec., 1629(1) (1998) 181-188.
[46] R.D. Recommendation, Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams, Mater. Struct., 18(106) (1985) 285-290.
[47] X. Li, A.F. Braham, M.O. Marasteanu, W.G. Buttlar, R.C. Williams, Effect of factors affecting fracture energy of asphalt concrete at low temperature, Road Mater. Pavement Des., 9(sup1) (2008) 397-416.
[48] A.F. Braham, W.G. Buttlar, M.O. Marasteanu, Effect of binder type, aggregate, and mixture composition on fracture energy of hot-mix asphalt in cold climates, Transp. Res. Rec., 2001(1) (2007) 102-109.
[49] S.H. Khanghahi, A. Tortum, Determination of the optimum conditions for gilsonite and glass fiber in HMA under mixed mode I/III loading in fracture tests, J. Mater. Civ. Eng., 30(7) (2018) 04018130.
[50] S. Sobhi, A. Yousefi, A. Behnood, The effects of Gilsonite and Sasobit on the mechanical properties and durability of asphalt mixtures, Constr. Build. Mater., 238 (2020) 117676.
[51] H. Fazaeli, Y. Samin, A. Pirnoun, A.S. Dabiri, Laboratory and field evaluation of the warm fiber reinforced high performance asphalt mixtures (case study Karaj–Chaloos Road), Constr. Build. Mater., 122 (2016) 273-283.
[52] S. Pirmohammad, A. Kiani, Effect of temperature variations on fracture resistance of HMA mixtures under different loading modes, Mater. Struct., 49(9) (2016) 3773-3784.
[53] K.W. Kim, S.J. Kweon, Y.S. Doh, T.S. Park, Fracture toughness of polymer-modified asphalt concrete at low temperatures, Can. J. Civ. Eng., 30(2) (2003) 406-413.