[1] T.W. Chao, Gaseous Detonation-Driven Fracture of Tubes, Ph.D. Dissertation, California Institute of Technology; Pasadena, California, (2004).
[2] M. Malekan, F.B. Barros, E. Sheibani, Thermo mechanical analysis of a cylindrical tube under internal shock loading using numerical solution, J. Braz. Soc. Mech. Sci. Eng., 38(8) (2016) 2635-2649.
[3] H. Eskandari, Three-dimensional investigation of cracked tubes coated with functionally graded material under shock loading, J. Braz. Soc. Mech. Sci. Eng., 40 (2016) 432.
[4] W.M. Beltman, J.E. Shepherd, Linear elastic response of tubes to internal detonation loading, J. Sound. Vib., 252(4) (2002) 617-655.
[5] M. Mirzaei, M. Malekan, E. Sheibani, Failure analysis and finite element simulation of deformation and fracture of an exploded CNG fuel tank, Eng. Fail. Anal., 30 (2013) 91-98.
[6] M. Mirzaei, H. Biglari, M. Salavatian, Analytical and numerical modeling of the transient elastodynamic response of a cylindrical tube to internal detonation loading, Int. J. Press. Vessels Pip., 83(7) (2006) 531-539.
[7] J. Zhou, Z. Deng, T. Liu, X. Hou, Elastic structural response of prismatic metal sandwich tubes to internal moving pressure loading, Int. J. Solids Struct., 46(11-12) (2009) 2354-2371.
[8] J. Zhou, Z. Deng, T. Liu, X. Hou, Optimal design of metallic sandwich tubes with prismatic cores to internal moving shock load, Struct. Multidiscipl. Optim., 41 (2010) 133-150.
[9] W.M. Beltman, J.E. Shepherd, The structural response of tubes to detonation and shock loading, Parts I and II, Technical Report FM98-3, California Institute of Technology, Pasadena, CA, (1998).
[10] M. Mirzaei, On amplification of stress waves in cylindrical tubes under internal dynamic pressures, Int. J. Mech. Sci., 50(8) (2008) 1292-1303.