[1] R.G. Budynas, J.K. Nisbett, Shigley’s Mechanical Engineering Design, 11th Edition, McGraw-Hill, USA, (2020).
[2] E. Haibach, Analytical Strength Assessment of Components in Mechanical Engineering. FKMGuideline, VDMA, (2003).
[3] D. Taylor, The Theory of Critical Distances: A New Perspective in Fracture Mechanics, Elsevier, (2010).
[4] Y. Chang, C. Sun, Y. Qiu, Effective notch stress method for fatigue assessment of sheet alloy material and bi-material welded joints, Thin-Walled Struct., 151 (2020) 106745.
[5] N. Habibi, M. Amoorezayi, A 3D simulation of bolted joint and fatigue life estimation using critical distance technique, J. Stress Anal., 4(1) (2019) 53-63.
[6] M. Kamal, M. Rahman, Advances in fatigue life modeling: A review, Renew. Sustain. Energy Rev., 82 (2018) 940-949.
[7] I. Al Zamzamia, S.M.J. Razavi, F. Berto, L. Susmel, The critical distance method to estimate the fatigue strength of notched additively manufactured titanium alloys, Procedia Struct. Integrity, 28 (2020) 994-1001.
[8] M.D. Chapetti, A.O. Guerrero, Estimation of notch sensitivity and size effect on fatigue resistance, Procedia Eng., 66 (2013) 323-333.
[9] L. Susmel, D. Taylor, A simplified approach to apply the theory of critical distances to notched components under torsional fatigue loading, Int. J. Fatigue, 28(4) (2006) 417-430.
[10] D. Taylor, Geometrical effects in fatigue: a unifying theoretical model, Int. J. Fatigue, 21(5) (1999) 413-420.
[11] L. Susmel, D. Taylor, An elasto-plastic reformulation of the theory of critical distances to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime, J. Eng. Mater. Technol., 132(2) (2010) 021002.
[12] S. Bentachfine, G. Pluvinage, J. Gilgert, Z. Azari, D. Bouami, Notch effect in low cycle fatigue, Int. J. Fatigue, 21(5)(1999) 421-430.
[13] G. Qilafku, N. Kadi, J. Dobranski, Z. Azari, M. Gjonaj, G. Pluvinage, Fatigue of specimens subjected to combined loading, Role of hydrostatic pressure, Int. J. Fatigue, 23(8) (2001) 689-701.
[14] G. Qylafku, Z. Azari, N. Kadi, M. Gjonaj, G. Pluvinage, Application of a new model proposal for fatigue life prediction on notches and key-seats, Int. J. Fatigue, 21(8) (1999) 753-760.
[15] R. Seifi, M.R. Mohammadi, Fatigue life estimation of the overloaded notched components, J. Brazilian Society Mech. Sciences Eng., 42 (2020) 51.
[16] A. Spaggiari, D. Castagnetti, E. Dragoni, S. Bulleri, Fatigue life prediction of notched components: a comparison between the theory of critical distance and the classical stress-gradient approach, Procedia Eng., 10 (2011) 2755-2767.
[17] D. Taylor, G. Wang, The validation of some methods of notch fatigue analysis, Fatigue Fract. Eng. Mater. Struct., 23(5) (2000) 387-394.
[18] L. Susmel, Multiaxial Notch Fatigue, Woodhead Publishing, Elsevier, (2009).
[19] M. Leitner, M. Vormwald, H. Remes, Statistical size effect on multiaxial fatigue strength of notched steel components, Int. J. Fatigue, 104 (2017) 322-333.
[20] M. Braun, A.M. Müller, A.S. Milaković, W. Fricke, S. Ehlers, Requirements for stress gradientbased fatigue assessment of notched structures according to theory of critical distance, Fatigue Fract. Eng. Mater. Struct., 43(7) ( 2020) 1541-1554.
[21] ASTM Standard E8/E8M-16a. Standard Test Methods for Tension Testing of Metallic Materials, vol 03.01., Annual Book of ASTM Standards, (2016).
[22] Alumium Association. International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, Arlington, (2009).
[23] ASTM Standard E466-15: Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue Test of Metallic Materials, vol. 03.01. Annual Book of ASTM Standards, (2015).
[24] Dassult Simulia. Analysis User Manual. Abaqus/Standard, (2021).
[25] Battelle Memorial Institute. Metallic Materials Properties Development and Standardization (MMPDS-11), 11 (2016).
[26] Y. Fujimoto, K. Hamada, E. Shintaku, G. Pirker. Inherent damage zone model for strength evaluation of small fatigue cracks, Eng. Fract. Mech., 68(4) (2001) 455-473.
[27] W. Illg, Fatigue tests on notched and unnotched sheet specimens of 2024-T3 and 7075-T6 aluminum alloys and of SAE 4130 steel with special consideration of the life range from 2 to 10,000 cycles, NACA Technical Notes, (1956).
[28] D. Taylor, S. Kasiri, A comparison of critical distance methods for fracture prediction, Int. J. Mech. Sci., 50(6) (2008) 1075-1081.