A Study on Main and Lateral Bending Angles in Laser Tube Bending Process

Document Type : Original Research Paper

Author

Mechanical Engineering Department, Arak University of Technology, Arak, Iran.

Abstract

Laser bending process of a circular tube made of mild steel was investigated with experimental tests and finite element simulations. The effects of main process parameters such as laser output power, laser scanning speed, and laser beam diameter on the main and lateral bending angles of laser-bent tube were studied. The experimental tests were performed with a continuous CO2 laser. The numerical simulations were carried out with Abaqus/Standard technique. The finite element simulations were compared with experimental measurements by adjusting the absorption and heat transfer coefficients of the heat flux in the numerical simulations and comparing the obtained temperature profiles with experimental results. The accuracy of numerical simulations was proved by comparing the numerical results with experimental measurements. The obtained experimental and numerical results showed that increase in the laser output power leads to an increase in the main and lateral bending angles. Moreover, the results proved that the main and lateral bending angles increased with decreasing the laser scanning speed and laser beam diameter.

Keywords


[1] M. Moradi, M. Karami Moghadam, M. Shamsborhan, Z. Malekshahi Beiranvand, A. Rasouli, M. Vahdati, A. Bakhtiari, M. Bodaghig, Simulation, statistical modeling, and optimization of CO2 laser cutting process of polycarbonate sheets, Optik, 225 (2021) 164932.
[2] M. Moradi, A. Ashoori, A. Hasani, Additive manufacturing of stellite 6 superalloy by direct laser metal deposition - Part 1: Effects of laser power and focal plane position, Opt. Laser Technol., 131 (2020) 106328.
[3] D. Abolhasani, S.M.H. Seyedkashi, M. Hoseinpour Gollo, Y.H. Moon, Effects of laser beam parameters on bendability and microstructure of stainless steel in three-dimensional laser forming, Appl. Sci., 9(20) (2019) 4463.
[4] M. Safari, R. Alves de Sousa, J. Joudaki, Recent advances in the laser forming process: a review, Metals, 10(11) (2020) 1472.
[5] M. Safari, R. Alves de Sousa, J. Joudaki, Fabrication of saddle-shaped surfaces by a laser forming process: an experimental and statistical investigation, Metals, 10 (2020) 883.
[6] M. Safari, J. Joudaki, Prediction of bending angle for laser forming of tailor machined blanks by neural network, Ir. J. Mater. Form., 5(1) (2018) 47-57.
[7] M. Safari, M. Farzin, Experimental investigation of laser forming of a saddle shape with spiral irradiating scheme, Opt. Laser Technol., 66 (2015) 146-150.
[8] N. Hao, On the process parameter of laser tube bending, in 2010 International Conference on Mechanic Automation and Control Engineering (MACE), Wuhan, China, 26-28 June, (2010).
[9] H.S. Hsieh, J. Lin, Study of the buckling mechanism in laser tube forming, Opt. Laser Technol., 37(5) (2005) 402-409.
[10] J. Zhang, P. Cheng, W. Zhang, M. Graham, J. Jones, M. Jones, Y. Lawrence Yao, Effects of scanning schemes on laser tube bending, J. Manuf. Sci. Eng., 128(1) (2006) 20-33.
[11] S. Silve, W.M. Steen, B. Podschies, in: Proceedings of ICALEO on Laser Forming Tubes: A Discussion of Principles, Section E, Orlando, FL, USA, 16-19 (1998) 151-160.
[12] J. Kraus, Basic process in laser bending of extrusion using the upsetting mechanism, Laser Assisted Net Shape Engineering, Proceeding of the LANE, 2 (1997) 431-438.
[13] W. Li, Y.L. Yao, Laser bending of tubes: mechanism, analysis, and prediction, ASME J. Manuf. Sci. Eng., 123(4) (2001) 674-681.
[14] Y. Guan, G. Yuan, S. Sun, G. Zhao, Process simulation and optimization of laser tube bending, Int. J. Adv. Manuf. Technol., 65 (2013) 333-342.
[15] X.Y. Wang, J. Wang, W.J. Xu, D.M. Guo, Scanning path planning for laser bending of straight tube into curve tube, Opt. Laser Technol., 56 (2014) 43-51.
[16] M.S. Che Jamil, E.R. Imam Fauzi, C.S. Juinn, M.A. Sheikh, Laser bending of pre-stressed thinwalled nickel micro-tubes, Opt. Laser Technol., 73 (2015) 105-117.
[17] Kh.I. Imhan, B.T.H.T. Baharudin, A. Zakaria, M.I.Sh.B. Ismail, N.M.H. Alsabti, A.K. Ahmad, Investigation of material specifications changes during laser tube bending and its influence on the modification and optimization of analytical modeling, Opt. Laser Technol., 95 (2017) 151-156.
[18] M. Safari, A study on the laser tube bending process: effects of the irradiating length and the number of irradiating passes, Ir. J. Mater. Form., 7(1) (2020) 46-53.
[19] S.E. Khandandel, S. Seyedkashi, M. Hoseinpour Gollo, Effect of cooling on bending angle and microstructure in laser tube bending with circumferential scanning, Ir. J. Mater. Form., 7(1) (2020) 14-23.
[20] S.E. Khandandel, S.M.H. Seyedkashi, M. Moradi, A novel path strategy design for precise 2D and 3D laser tube forming process; experimental and numerical investigation, Optik, 206 (2020) 164302.
[21] M. Safari, H. Mostaan, M. Farzin, Laser bending of tailor machined blanks: Effect of start point of scan path and irradiation direction relation to step of the blank, Alex. Eng. J., 55(2) (2016) 1587-1594.