Developing of Chebyshev Collocation Spectral Method for Analysis of Multiple Structural Mechanics

Document Type : Original Research Paper


1 Mechanical Engineering Department, Shahrekord University, Shahrekord, Iran.

2 Mechanical Engineering Department, Semnan University, Semnan, Iran.


In this work, the spectral collocation method based on Chebyshev polynomials is developed and utilized for analysis of static, free vibration, and dynamic behavior of one and two-dimensional solid structures. The main objective of the work is to introduce the spectral collocation method with Chebyshev polynomials as a powerful numerical method for solid mechanic analysis. To show the advantage and effortlessness of this method, one and two-dimensional solid structures as case studies were considered and the spectral collocation method was directly applied to the analysis and the governing equation was solved. Moreover, the homogeneous material properties and functionally graded material properties were analyzed to show the capability of the introduced method for solving the more complicated equations of motion. The results obtained for each case were compared with analytical and numerical results presented in the literature and some results were also compared with ANSYS. The results showed that the presented method has very good accuracy and efficiency to solve structural-mechanical properties.


[1] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin Heidelberg, (2007).
[2] M. Krawczuk, M. Palacz, W. Ostachowicz, The dynamic analysis of a cracked Timoshenko beam by the spectral element method, J. Sound Vib., 264(5) (2003) 1139-1153.
[3] Dale R. Durran, Numerical Methods for Fluid Dynamics With Applications to Geophysics, Second Edition, Springer-Verlag, New York, Seattle, (2010).
[4] P. Grandcl´ement, Introduction to spectral methods, EAS Publications Series, (2006) DOI:10.1051/eas:2006112.
[5] A. Pinelli, A. Vacca, Chebyshev collocation method and multidomain decomposition for the incompress ible navier-stokes equations, Int. J. Numer. Methods Fluids, 18(8) (1994) 781-799.
[6] X. Zhang, X.H. Liu, K.Z. Song, M.W. Lu, Leastsquares collocation meshless method, Int. J. Numer. Methods Eng., 51 (2001) 1089-1100.
[7] X. Liu, G.R. Liu, K. Tai, K.Y. Lam, Radial basis point interpolation collocation method for 2-dsolid problem, Advances in Meshfree and X-FEM Methods, (2002) 35-40. DOI:10.1142/9789812778611_0008.
[8] S.H. Lee and Y.C. Yoon, Meshfree point collocation method for elasticityand crack problems, Int. J. Numer. Methods Eng., 61(1) (2004) 22-48.
[9] O. Civalek, O. Kiracioglu, Free vibration analysis of Timoshenko beams by DSC method, Int. J. Numer. Meth. Biomed. Eng., 26(12) (2010) 1890-1898.
[10] O. Civalek, A. Yavas, Large Deflection Static Analysis of Rectangular Plates On Two Parameter Elastic Foundations, Int. J. Sci. Tech., 1(1) (2006) 43-50.
[11] K. Mercan, C. Demir, O. Civalek, Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique, Curved and Layer. Struct., 3 (1) (2016) 82-90.
[12] H. Nourmohammadi, B. Behjat, Static analysis of functionally graded piezoelectric plates under electro-thermo-mechanical loading using a meshfree method based on RPIM, J. Stress Anal., 4(2) (2020) 93-106.
[13] M. Sheikhi Azqandia, M. Hassanzadeh, M. Arjmand, Calculation of design shape sensitivity in solid mechanics through a novel hybrid method using CVM and DSM, J. Stress Anal., 5(1) (2020) 11-20.
[14] D. Zhou, Y.K. Cheung, F.T.K. Au, S.H. Lo, Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method, Int. J. Solids Struct., 39(26) (2002) 6339-6353.
[15] I. Celik, Solution of magnetohydrodynamic flow in a rectangular ductby Chebyshev collocation method, Int. J. Numer. Methods Fluids, 66(10) (2011) 1325-1340.
[16] J.M. Carcione, A 2D Chebyshev differential operator for the elastic wave equation, Comput. Methods Appl. Mech. Eng., 130(1-2) (1996) 33-45.
[17] U. Ehrenstein, R. Peyret, A chebyshev collocation method for the navier-stokes equations with application todouble-diffusive convection, Int. J. Numer. Methods Fluids, 9(4) (1989) 427-452.
[18] L.Z. Wu, S.R. Zhu, J. Peng, Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-induced landslides, Appl. Math. Modell., 80 (2020) 408-425.
[19] Y. Huang, Y. Zhao, T. Wang, H. Tian, A new Chebyshev spectral approach for vibration of inplane functionally graded Mindlin plates with variable thickness, Appl. Math. Modell., 74 (2019) 21-42.
[20] R. Rani, R. Lal, Free vibrations of composite sandwich plates by Chebyshev collocation technique, Composites Part B, 165 (2019) 442-455.
[21] N.K. Guru, S.K. Jain, Free axisymmetric vibrations of composite annular sandwich plates by higher-order theory using Chebyshev collocation technique, Thin Walled Struct., 155 (2020) 106823.
[22] J. Alihemmati, Y. Tadi Beni, Y. Kiani, Application of Chebyshev collocation method to unified generalized thermoelasticity of a finite domain, J. Therm. Stresses, 44(5) (2020) 547-565.
[23] J. Alihemmati, Y. Tadi Beni, Y. Kiani, LSbased and GL-based thermoelasticity in two dimensional bounded media: A Chebyshev collocation analysis, J. Therm. Stresses, (2021), DOI:10.1080/01495739.2021.1922112.
[24] C.H. Lin, M.H.R. Jen, Analysis of a laminated anisotropic plate by Chebyshev collocation method, Compos. B. Eng., 36(2) (2005) 155-169.
[25] S. Gumgum, E. Kurul, N. Baykus Savasaneril, Chebyshev collocation method for the twodimensional heat equation, Communication in Mathematical Modeling and Applications, 3(2) (2018) 1-8.
[26] O¨. Civalek, C. Demir, A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method, Appl. Math. Comput., 289 (2016) 335-352.
[27] M. Mohtashami, Y. Tadi Beni, Size-dependent buckling and vibrations of piezoelectric nanobeam with finite element method, Iran J. Sci. Technol. Trans. Civ. Eng., 43 (2019) 563-576.
[28] M. Gürses, B. Akgöz, Ö. Civalek, Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation, Appl. Math. Comput., 219(6) (2012) 3226-3240.
[29] F. Karami, A. Ahmadi Nadooshan, Y. Tadi Beni, Analytical solution of Newtonian nanofluid flow in a tapered artery based on a consistent couple stress theory, Heat Mass Transf., 56 (2020) 459-476.
[30] I. Soleimani, Y. Tadi Beni, M. Botshekanan Dehkordi, Size-dependent two-node axisymmetric shell element for buckling analysis with couple stress theory, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233(13) (2019) 4729-4741.
[31] I. Soleimani, Y. Tadi Beni, Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element, Arch. Civ. Mech. Eng., 18(4) (2018) 1345-1358.
[32] C. Demir, O. Civalek, On the analysis of microbeams, Int. J. Eng. Sci., 121 (2017) 14-33.
[33] Y. Tadi Beni, Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams, J. Intell. Mater. Syst. Struct., 27(16) (2016) 2199-2215.
[34] I. Soleimani, Y. Tadi Beni, F. Mehralian, A new size-dependent cylindrical shell element based on modified couple stress theory, Adv. Appl. Math. Mech., 10(4) (2018) 819-844.
[35] Sh. Dastjerdi, Y. Tadi Beni, A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment, Mech. Based Des. Struct. Mach., 47(4) (2019) 453-478.
[36] J. Alihemmati, Y. Tadi Beni, Developing threedimensional mesh-free Galerkin method for structural analysis of general polygonal geometries, Eng. Comput., 36 (2020) 1059-1068.
[37] V.S. Arpaci, Conduction heattransfer, AddisonWesley, Massachusetts, (1966).
[38] W. Michael Lai, D. Rubln, E. Krempl, Introduction to Continuum Mechanics, Third Edition, Butterworth-Heinemann, Woburn, (1994).
[39] N. Tutuncu, B. Temel, A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres, Compos. Struct., 91(3) (2009) 385-390.
[40] J. Alihemmati, M. Foroutan, A. Soltanimaleki, Dynamic analysis of functionally graded fiber reinforced cylinders under an impact load by a three dimensional mesh free approach, J. Dyn. Behav. Mater., 3 (2017) 391-406.
[41] H. Zeighampour, Y. Tadi Beni, Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory, Appl. Math. Model., 39(18) (2015) 5354-5369.