[1] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin Heidelberg, (2007).
[2] M. Krawczuk, M. Palacz, W. Ostachowicz, The dynamic analysis of a cracked Timoshenko beam by the spectral element method, J. Sound Vib., 264(5) (2003) 1139-1153.
[3] Dale R. Durran, Numerical Methods for Fluid Dynamics With Applications to Geophysics, Second Edition, Springer-Verlag, New York, Seattle, (2010).
[4] P. Grandcl´ement, Introduction to spectral methods, EAS Publications Series, (2006) DOI:10.1051/eas:2006112.
[5] A. Pinelli, A. Vacca, Chebyshev collocation method and multidomain decomposition for the incompress ible navier-stokes equations, Int. J. Numer. Methods Fluids, 18(8) (1994) 781-799.
[6] X. Zhang, X.H. Liu, K.Z. Song, M.W. Lu, Leastsquares collocation meshless method, Int. J. Numer. Methods Eng., 51 (2001) 1089-1100.
[7] X. Liu, G.R. Liu, K. Tai, K.Y. Lam, Radial basis point interpolation collocation method for 2-dsolid problem, Advances in Meshfree and X-FEM Methods, (2002) 35-40. DOI:10.1142/9789812778611_0008.
[8] S.H. Lee and Y.C. Yoon, Meshfree point collocation method for elasticityand crack problems, Int. J. Numer. Methods Eng., 61(1) (2004) 22-48.
[9] O. Civalek, O. Kiracioglu, Free vibration analysis of Timoshenko beams by DSC method, Int. J. Numer. Meth. Biomed. Eng., 26(12) (2010) 1890-1898.
[10] O. Civalek, A. Yavas, Large Deflection Static Analysis of Rectangular Plates On Two Parameter Elastic Foundations, Int. J. Sci. Tech., 1(1) (2006) 43-50.
[11] K. Mercan, C. Demir, O. Civalek, Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique, Curved and Layer. Struct., 3 (1) (2016) 82-90.
[12] H. Nourmohammadi, B. Behjat, Static analysis of functionally graded piezoelectric plates under electro-thermo-mechanical loading using a meshfree method based on RPIM, J. Stress Anal., 4(2) (2020) 93-106.
[13] M. Sheikhi Azqandia, M. Hassanzadeh, M. Arjmand, Calculation of design shape sensitivity in solid mechanics through a novel hybrid method using CVM and DSM, J. Stress Anal., 5(1) (2020) 11-20.
[14] D. Zhou, Y.K. Cheung, F.T.K. Au, S.H. Lo, Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method, Int. J. Solids Struct., 39(26) (2002) 6339-6353.
[15] I. Celik, Solution of magnetohydrodynamic flow in a rectangular ductby Chebyshev collocation method, Int. J. Numer. Methods Fluids, 66(10) (2011) 1325-1340.
[16] J.M. Carcione, A 2D Chebyshev differential operator for the elastic wave equation, Comput. Methods Appl. Mech. Eng., 130(1-2) (1996) 33-45.
[17] U. Ehrenstein, R. Peyret, A chebyshev collocation method for the navier-stokes equations with application todouble-diffusive convection, Int. J. Numer. Methods Fluids, 9(4) (1989) 427-452.
[18] L.Z. Wu, S.R. Zhu, J. Peng, Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-induced landslides, Appl. Math. Modell., 80 (2020) 408-425.
[19] Y. Huang, Y. Zhao, T. Wang, H. Tian, A new Chebyshev spectral approach for vibration of inplane functionally graded Mindlin plates with variable thickness, Appl. Math. Modell., 74 (2019) 21-42.
[20] R. Rani, R. Lal, Free vibrations of composite sandwich plates by Chebyshev collocation technique, Composites Part B, 165 (2019) 442-455.
[21] N.K. Guru, S.K. Jain, Free axisymmetric vibrations of composite annular sandwich plates by higher-order theory using Chebyshev collocation technique, Thin Walled Struct., 155 (2020) 106823.
[22] J. Alihemmati, Y. Tadi Beni, Y. Kiani, Application of Chebyshev collocation method to unified generalized thermoelasticity of a finite domain, J. Therm. Stresses, 44(5) (2020) 547-565.
[23] J. Alihemmati, Y. Tadi Beni, Y. Kiani, LSbased and GL-based thermoelasticity in two dimensional bounded media: A Chebyshev collocation analysis, J. Therm. Stresses, (2021), DOI:10.1080/01495739.2021.1922112.
[24] C.H. Lin, M.H.R. Jen, Analysis of a laminated anisotropic plate by Chebyshev collocation method, Compos. B. Eng., 36(2) (2005) 155-169.
[25] S. Gumgum, E. Kurul, N. Baykus Savasaneril, Chebyshev collocation method for the twodimensional heat equation, Communication in Mathematical Modeling and Applications, 3(2) (2018) 1-8.
[26] O¨. Civalek, C. Demir, A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method, Appl. Math. Comput., 289 (2016) 335-352.
[27] M. Mohtashami, Y. Tadi Beni, Size-dependent buckling and vibrations of piezoelectric nanobeam with finite element method, Iran J. Sci. Technol. Trans. Civ. Eng., 43 (2019) 563-576.
[28] M. Gürses, B. Akgöz, Ö. Civalek, Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation, Appl. Math. Comput., 219(6) (2012) 3226-3240.
[29] F. Karami, A. Ahmadi Nadooshan, Y. Tadi Beni, Analytical solution of Newtonian nanofluid flow in a tapered artery based on a consistent couple stress theory, Heat Mass Transf., 56 (2020) 459-476.
[30] I. Soleimani, Y. Tadi Beni, M. Botshekanan Dehkordi, Size-dependent two-node axisymmetric shell element for buckling analysis with couple stress theory, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233(13) (2019) 4729-4741.
[31] I. Soleimani, Y. Tadi Beni, Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element, Arch. Civ. Mech. Eng., 18(4) (2018) 1345-1358.
[32] C. Demir, O. Civalek, On the analysis of microbeams, Int. J. Eng. Sci., 121 (2017) 14-33.
[33] Y. Tadi Beni, Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams, J. Intell. Mater. Syst. Struct., 27(16) (2016) 2199-2215.
[34] I. Soleimani, Y. Tadi Beni, F. Mehralian, A new size-dependent cylindrical shell element based on modified couple stress theory, Adv. Appl. Math. Mech., 10(4) (2018) 819-844.
[35] Sh. Dastjerdi, Y. Tadi Beni, A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment, Mech. Based Des. Struct. Mach., 47(4) (2019) 453-478.
[36] J. Alihemmati, Y. Tadi Beni, Developing threedimensional mesh-free Galerkin method for structural analysis of general polygonal geometries, Eng. Comput., 36 (2020) 1059-1068.
[37] V.S. Arpaci, Conduction heattransfer, AddisonWesley, Massachusetts, (1966).
[38] W. Michael Lai, D. Rubln, E. Krempl, Introduction to Continuum Mechanics, Third Edition, Butterworth-Heinemann, Woburn, (1994).
[39] N. Tutuncu, B. Temel, A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres, Compos. Struct., 91(3) (2009) 385-390.
[40] J. Alihemmati, M. Foroutan, A. Soltanimaleki, Dynamic analysis of functionally graded fiber reinforced cylinders under an impact load by a three dimensional mesh free approach, J. Dyn. Behav. Mater., 3 (2017) 391-406.
[41] H. Zeighampour, Y. Tadi Beni, Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory, Appl. Math. Model., 39(18) (2015) 5354-5369.