[1] S.W. Gong, S.L. Toh, V.P.W. Shim, The elastic response of orthotropic laminated cylindrical shells o low-velocity impact, Compos. Eng., 4(2) (1994) 247-266.
[2] S.L. Toh, S.W. Gong, V.P.W. Shim, Transient stresses generated by low-velocity impact on orthotropic laminated cylindrical shells, Compos. Struct., 31(3) (1995) 213-228.
[3] S.A. Matemilola, W.J. Stronge, Impact response of composite cylinders, Int. J. Solids Struct., 34(21) (1997) 2669-2684.
[4] S. Abrate, Modeling of impacts on composite structures, Compos. Struct., 51(2) (2001) 129-138.
[5] S.C. Her, Y.C. Liang, The finite element analysis of composite laminates and shell structures subjected to low velocity impact, Compos. Struct., 66(1-4) (2004) 277-285.
[6] S. Kumar, B. Nageswara Rao, B. Pradhan, Effect of impactor parameters and laminate characteristics on impact response and damage in curved composite laminates, J. Reinf. Plast. Compos., 26(13) (2007) 1273-1290.
[7] H. Saghafi, G. Minak, A. Zucchelli, Effect of preload on the impact response of curved composite panels. Compos. B Eng., 60 (2014) 74-81.
[8] I.H. Choi, Geometrically nonlinear transient analysis of composite laminated plate and shells subjected to low-velocity impact, Compos. Struct., 142 (2016) 7-14.
[9] F. Najafi, M.H. Shojaeefard, H. Saeidi Googarchin, Low-velocity impact response of functionally graded doubly curved panels with WinklerPasternak elastic foundation: an analytical approach, Compos. Struct., 162 (2017) 351-364.
[10] R. Rafiee, A. Ghorbanhosseini, S. Rezaee, Theoretical and numerical analyses of composite cylinders subjected to the low-velocity impact, Compos. Struct., 226 (2019) 111230.
[11] T. Langella, A. Rogani, P. Navarro, J.F. Ferrero, V. Lopresto, A. Langella, Experimental study of the influence of a tensile preload on thin woven composite laminates under impact loading, J. Mater. Eng. Perform., 28(6) (2019) 3203-3210.
[12] W. Harris, C. Soutis, C. Atkin, Impact response of curved composite laminates: effect of radius and thickness, Appl. Compos. Mater., 27(5) (2020) 555-573.
[13] B. Liao, Y. Du, J. Zheng, D. Wang, Y. Lin, R. Tao, C. Zhou, Prediction of residual burst strength for composite pressure vessels after low velocity impact, Int. J. Hydrog. Energy, 45(18) (2020) 10962-10976.
[14] R. Rafiee, H. Rashedi, S. Rezaee, Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal pressure, Front. Struct. Civ. Eng., 14(6) (2020) 1349-1358.
[15] K.P. Soldatos, V.P. Hadjigeorgiou, Threedimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels, J. Sound Vib., 137(3) (1990) 369-384.
[16] S.M.R. Khalili, K. Malekzadeh, A. Davar, P. Mahajan, Dynamic response of pre-stressed fiber metal laminate (FML) circular cylindrical shells subjected to lateral pressure pulse loads, Compos. Struct., 92(6) (2010) 1308-1317.
[17] G.G. Sheng, X. Wang, Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium, J. Reinf. Plast. Compos., 27(2) (2008) 117-134.
[18] R.M. Jones, Mechanics of Composite Materials, 2nd Ed., Taylor Francis, Virginia, (1998).
[19] C.W. Bert, M. Kumar, Vibration of cylindrical shells of bimodulus composite materials, J. Sound Vib., 81(1) (1982) 107-121.
[20] L. Meirovitch, Fundamentals of Vibrations. McGraw-Hill Publisher, (2001).
[21] T. Vodenitcharova, P. Ansourian, Buckling of circular cylindrical shells subject to uniform lateral pressure, Eng. Struct., 18(8) (1996) 604-614.
[22] J.L. Mantari, A.S. Oktem, C. Guedes Soares, Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory, Compos. Struct., 94(1) (2011) 37-49.
[23] S.R. Swanson, Limits of quasi-static solutions in impact of composite structures, Compos. Eng., 2(4) (1992) 261-267.
[24] I.H. Choi, C.H. Lim, Low-velocity impact analysis of composite laminates using linearized contact law, Compos. Struct., 66(1-4) (2004) 125-132.
[25] S.M.R. Khalili, M. Soroush, A. Davar, O. Rahmani, Finite element modeling of low-velocity impact on laminated composite plates and cylindrical shells, Compos. Struct., 93(5) (2011) 1363-1375.
[26] X. Zhao, K.M. Liew, T.Y. Ng, Vibration analysis of laminated composite cylindrical panels via a meshfree approach, Int. J. Solids Struct., 40(1) (2003) 161-180.
[27] K.P. Soldatos, A comparison of some shell theories used for the dynamic analysis of cross-ply laminated circular cylindrical panels, J. Sound Vib., 97(2) (1984) 305-319.
[28] R. Azarafza, S.M.R. Khalili, A.A. Jafari, A. Davar, Analysis and optimization of laminated composite circular cylindrical shell subjected to compressive axial and transverse transient dynamic loads, Thin-Walled Struct., 47(8-9) (2009) 970-983.
[29] B. Mirzavand, M.R. Eslami, Thermal buckling of imperfect functionally graded cylindrical shells based on the Wan–Donnell model, J. Therm. Stresses, 29(1) (2006) 37-55.
[30] E. Asadi, W. Wang, M.S. Qatu, Static and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories, Compos. Struct., 94(2) (2012) 494-500.
[31] L.S. Kistler, A.M. Waas, Experiment and analysis on the response of curved laminated composite panels subjected to low-velocity impact, Int. J. Impact. Eng., 21(9) (1998) 711-736.
[32] M.O. Pierson, R. Vaziri, Analytical solution for low-velocity impact response of composite plates, AIAA J., 34(8) (1996) 1633-1640.