[1] P. Muthu, Optimization of the process parameters of resistance spot welding of AISI 316l sheets using Taguchi method, Mech. Mech. Eng., 23(1) (2019) 64-69.
[2] H. Tavakoli Hoseini, M. Farahani, M. Sohrabian, Process analysis of resistance spot welding on the Inconel alloy 625 using artificial neural networks, Int. J. Manuf. Res., 12(4) (2017) 444-460.
[3] R. Kumar, J.S. Chohan, R. Goyal, P. Chauhan, Impact of process parameters of resistance spot welding on mechanical properties and micro hardness of stainless steel 304 weldments, Int. J. Struct. Integrity, 12(3) (2021) 366-377.
[4] M. Huang, Q. Zhang, L. Qi, L. Deng, Y. Li, Effect of external magnetic field on resistance spot welding of aluminum alloy AA6061-T6, J. Manuf. Processes, 50 (2020) 456-466.
[5] T. Chen, Z. Ling, M. Wang, L. Kong, Effect of a slightly concave electrode on resistance spot welding of Q&P1180 steel, J. Mater. Process. Technol., 285 (2020) 116797.
[6] R. Karthikeyan, V. Balasubramaian, Optimization of electrical resistance spot welding and comparison with friction stir spot welding of AA2024-T3 aluminum alloy joints, Mater. Today: Proc., 4(2) (2017) 1762-1771.
[7] D. Zhao, M. Ivanov, Y. Wang, D. Liang, W. Du, Multi-objective optimization of the resistance spot welding process using a hybrid approach, J. Intell. Manuf., 32 (2021) 2219-2234.
[8] K. Vignesh, A. Elaya Perumal, P. Velmurugan, Resistance spot welding of AISI-316L SS and 2205 DSS for predicting parametric influences on weld strength-experimental and FEM approach, Arch. Civ. Mech. Eng., 19(4) (2019) 1029-1042.
[9] Y.J. Xia, Z.W. Su, Y.B. Li, L. Zhou, Y. Shen, Online quantitative evaluation of expulsion in resistance spot welding, J. Manuf. Processes, 46 (2019) 34-43.
[10] P.A. Dhawale, B.P. Ronge, Parametric optimization of resistance spot welding for multi spot welded lap shear specimen to predict weld strength, Mater. Today: Proc., 19 (2019) 700-707.
[11] M. Atashparva, M. Hamedi, Investigating mechanical properties of small scale resistance spot welding of a nickel based super lloy through statistical DOE, Exp. Tech., 42(1) (2018) 27-43.
[12] J.H. Ordoñez, R.R. Ambriz, C. García, G. Plascencia, D. Jaramillo, Overloading effect on the fatigue strength in resistance spot welding joints of a DP980 steel, Int. J. Fatigue, 121 (2019) 163-171.
[13] X. Wan, Y. Wang, D. Zhao, Y. Huang, A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding, Mech. Syst. Sig. Process., 93 (2017) 634-644.
[14] Y. Cho, S. Rhee, Quality estimation of resistance spot welding by using pattern recognition with neural networks, IEEE Trans. Instrum. Meas., 53(2) (2004) 330-334.
[15] B.N. Panda, M.R. Babhubalendruni, B.B. Biswal, D.S. Rajput, editors. Application of artificial intelligence methods to spot welding of commercial aluminum sheets (B.S. 1050). K.N. Das et al. (eds.), Proceedings of Fourth International Conference on Soft Computing for Problem Solving, Advances in Intelligent Systems and Computing, Springer India, (2015) 335.
[16] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014) 46-61.
[17] I.M. Sobol, Sensitivity analysis for non-linear mathematical models, Math. Modelling. Comput. Experiments, 4 (1993) 407-414.
[18] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons Publisher, (2017).