[1] M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res., 1(4) (1986) 601-609.
[2] A. Fischer-Cripps, Nanoindentation, 3 Edition, Springer New York, NY, (2011).
[3] H. Lee, J.H. Lee, G.M. Pharr, A numerical approach to spherical indentation techniques for material property evaluation, J. Mech. Phys. Solids, 53(9) (2005) 2037-2069.
[4] J.Y. Kim, K.W. Lee, J.S. Lee, D. Kwon, Determination of tensile properties by instrumented indentation technique: Representative stress and strain approach, Surf. Coat. Technol., 201(7) (2006) 4278-4283.
[5] A. Boschetto, F. Quadrini, E.A. Squeo, Extracting local mechanical properties of steel bars by means of instrumented flat indentation, Meas., 44(1) (2011) 129-138.
[6] H. Wang, A. Dhiman, H.E. Ostergaard, Y. Zhang, T. Siegmund, J.J. Kruzic, V. Tomar, Nanoindentation based properties of Inconel 718 at elevated temperatures: A comparison of conventional versus additively manufactured samples, Int. J. Plast., 120 (2019) 380-394.
[7] L. Lu, M. Dao, P. Kumar, U. Ramamurty, G.E. Karniadakis, S. Suresh, Extraction of mechanical properties of materials through deep learning from instrumented indentation, Proc. Natl. Acad. Sci., 117(13) (2020) 7052-7062.
[8] K.O. Kese, Z.C. Li, B. Bergman, Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation, J. Mater. Res., 19(10) (2004) 3109-3119.
[9] M. Zhao, X. Chen, J. Yan, A.M. Karlsson, Determination of uniaxial residual stress and mechanical properties by instrumented indentation, Acta Mater., 54(10) (2006) 2823-2832.
[10] Y.C. Huang, S.Y. Chang, C.H. Chang, Effect of residual stresses on mechanical properties and interface adhesion strength of SiN thin films, Thin Solid Films, 517(17) (2009) 4857-4861.
[11] M.K. Khan, M.E. Fitzpatrick, S.V. Hainsworth, L. Edwards, Effect of residual stress on the nanoindentation response of aerospace aluminium alloys, Comput. Mater. Sci., 50(10) (2011) 2967-2976.
[12] G. Skordaris, K.D. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, B. Breidenstein, B. Bergmann, B. Denkena, Effect of PVD film’s residual stresses on their mechanical properties, brittleness, adhesion and cutting performance of coated tools, J. Manuf. Sci. Technol., 18 (2017) 145-151.
[13] L. Xiao, D. Ye, C. Chen, A further study on representativemodels for calculating the residual stress based on theinstrumented indentation technique, Comput. Mater. Sci., 82 (2014) 476-482.
[14] J. Yan, A.M. Karlsson, X. Chen, Determining plastic properties of a material with residual stress by using conical indentation, Int. J. Solids Struct., 44(11-12) (2007) 3720-3737.
[15] ISO, Metallic materials - Measurement of mechanical properties by an instrumented indentation test - Indentation tensile properties, in, ISO/TR29381, (2008).
[16] S.H. Kim, B.W. Lee, Y. Choi, D. Kwon, Quantitative determination of contact depth during spherical indentation of metallic materials-A FEM study, Mater. Sci. Eng., A, 415(1-2) (2006) 59-65.
[17] R. Moharrami, M. Sanayei, Improvement of indentation technique for measuring general biaxial residual stresses in austenitic steels, Precis. Eng., 64 (2020) 220-227.
[18] Y.H. Lee, D. Kwon, Estimation of biaxial surface stress byinstrumented indentation with sharp indenters, J. Acta Mater., 52(6) (2004) 1555-1563.