[1] D. Cinquegrana, P.L. Vitagliano, Validation of a new fluid-structure interaction framework for nonlinear instabilities of 3D aerodynamic configurations, J. Fluids Struct., 103 (2021) 103264.
[2] E. Alaei, H. Afrasiab, M. Dardel, Analytical and numerical fluid-structure interaction study of a microscale piezoelectric wind energy harvester, Wind Energy., 23(6) (2020) 1444-1460.
[3] S. Meduri, M. Cremonesi, A. Frangi, U. Perego, A lagrangian fluid-structure interaction approach for the simulation of airbag deployment, Finite Elem. Anal. Des., 198 (2022) 103659.
[4] J. Boustani, M.F. Barad, C.C. Kiris, C. Brehm, An immersed boundary fluid-structure interaction method for thin, highly compliant shell structures, J. Comput. Phys., 438 (2021) 110369.
[5] A. Morvan, M. Sacher, A. Nˆeme, J.B. Leroux, C. Jochum, N. Abiven, Efficient jib-mainsail fluidstructure interaction modelling Validations with semi-rigid sails experiments, Ocean Eng., 243 (2022) 110210.
[6] H. Afrasiab, M.R. Movahhedy, A. Assempour, Proposal of a new design for valveless micropumps, Sci. Iran., 18(6) (2011) 1261-1266.
[7] H. Safi, N. Phillips, Y. Ventikos, R. Bomphrey, Implementing fluid-structure interaction computational and empirical techniques to assess hemodynamics of abdominal aortic aneurysms, Artery Res., 20(C) (2017) 55-56.
[8] M. Kazemiyan, H. Afrasiab, M.H. Pashaei, Comparison of the plaque rupture risk in different double-stenosis arrangements of coronary arteries by modeling fluid-structure interaction, Modares Mech. Eng., 16(2) (2016) 10-18.
[9] Z. Xie, X. Wang, W. Zhu, Theoretical and experimental exploration into the fluid structure coupling dynamic behaviors towards water-lubricated bearing with axial asymmetric grooves, Mech. Syst. Signal Process., 168 (2022) 108624.
[10] J. Pirnar, B. Širok, A. Bombač, Effect of airway surface liquid on the forces on the pharyngeal wall: Experimental fluid-structure interaction study, J. Biomech., 63 (2017) 117-124.
[11] T. Gleim, P. Birken, M. Weiland, D. Kuhl, A. Meister, O. Wünsch, Experimental and numerical aspects of a thermal fluid-structure phenomenon, AIP Conf. Proc., 1863(1) (2017) 410004.
[12] A. Hessenthaler, N.R. Gaddum, O. Holub, R. Sinkus, O. Röhrle, D. Nordsletten, Experiment for validation of fluid-structure interaction models and algorithms, Int. J. Numer. Methods Biomed. Eng., 33(9) (2017) e2848.
[13] P.B. Ryzhakov, E. Oñate, A finite element model for fluid-structure interaction problems involving closed membranes, internal and external fluids, Comput. Methods Appl. Mech. Eng., 326 (2017) 422-445.
[14] M. Abbadeni, I. Zidane, H. Zahloul, A. Fatu, M. Hajjam, Finite element analysis of fluid-structure interaction in the hydromechanical deep drawing process, J. Mech. Sci. Technol., 31(11) (2017) 5485-5491.
[15] A.K. Slone, K. Pericleous, C. Bailey, M. Cross, Dynamic fluid-structure interaction using finite volume unstructured mesh procedures, Comput. Struct., 80(5-6) (2002) 371-390.
[16] D.R. Wilkes, A.J. Duncan, Acoustic coupled fluidstructure interactions using a unified fast multipole boundary element method, J. Acoust. Soc. Am., 137(4) (2015) 2158-2167.
[17] H. Yao, H. Zhang, H. Liu, W. Jiang, Numerical study of ow-excited noise of a submarine with full appendages considering fluid structure interaction using the boundary element method, Eng. Anal. Bound. Elem., 77 (2017) 1-9.
[18] L. Wang, G.M.D. Currao, F. Han, A.J. Neely, J. Young, F.-B. Tian, An immersed boundary method for fluid-structure interaction with compressible multiphase ows, J. Comput. Phys., 346 (2017) 131-151.
[19] A. Gerstenberger, W.A. Wall, An extended finite element method/lagrange multiplier based approach for fluid-structure interaction, Comput. Methods Appl. Mech. Eng., 197(19-20) (2008) 1699-1714.
[20] D.J. Munk, T. Kipouros, G.A. Vio, G.P. Steven, G.T. Parks, Topology optimisation of micro fluidic mixers considering fluid-structure interactions with a coupled lattice Boltzmann algorithm, J. Comput. Phys., 349 (2017) 11-32.
[21] A. Zhang, P. Sun, F. Ming, A. Colagrossi, Smoothed particle hydrodynamics and its applications in fluid-structure interactions, J. Hydrodyn. Ser B., 29(2) (2017) 187-216.
[22] D. Soares Jr., Fluid-structure interaction analysis by optimised boundary element-finite element coupling procedures, J. Sound Vib., 322(1-2) (2009) 184-195.
[23] X. Cui, X. Yao, Z. Wang, M. Liu, A hybrid wavelet-based adaptive immersed boundary finite- difference lattice Boltzmann method for twodimensional fluid-structure interaction, J. Comput. Phys., 333 (2017) 24-48.
[24] Z. Li, J. Favier, A non-staggered coupling of finite element and lattice Boltzmann methods via an immersed boundary scheme for fluid-structure interaction, Comput. Fluids., 143 (2017) 90-102.
[25] Z. Li, J. Leduc, A. Combescure, F. Leboeuf, Coupling of SPH-ALE method and finite element method for transient fluid-structure interaction, Comput. Fluids., 103 (2014) 6-17.
[26] D. Hu, T. Long, Y. Xiao, X. Han, Y. Gu, Fluidstructure interaction analysis by coupled FE-SPH model based on a novel searching algorithm, Comput. Methods Appl. Mech. Eng., 276 (2014) 266-286.
[27] J.R. Craig, W. Wayne Read, The future of analytical solution methods for groundwater ow and transport simulation, XVIII International Conference on Water Resources (CMWR), Barcelona, (2010).
[28] H. Afrasiab, M.R. Movahhedy, Treatment of the small time instability in the finite element analysis of fluid structure interaction problems, Int. J. Numer. Methods Fluids., 71(6) (2013) 756-771.
[29] H. Afrasiab, M.R. Movahhedy, A. Assempour, Fluid-structure interaction analysis in micro microfluidic devices: A dimensionless finite element approach, Int. J. Numer. Methods Fluids., 68(9) (2012) 1073- 1086.
[30] P. Xu, P.R. Wellens, Theoretical analysis of nonlinear fluid-structure interaction between largescale polymer offshore oating photovoltaics and waves, Ocean Eng., 249 (2022) 110829.
[31] S. Soni, N.K. Jain, P.V. Joshi, A. Gupta, Effect of fluid-structure interaction on vibration and deflection analysis of generally orthotropic submerged micro-plate with crack under thermal environment: an analytical approach, J. Vib. Eng. Technol., 8 (2020) 643-672.
[32] M. Fritsche, P. Epple, A. Delgado, Analytical and numerical investigation of the fluid structure interaction of an elastic beam in a water channel, Proceedings of the ASME (American Society of Mechanical Engineers Digital Collection) 2020 International Mechanical Engineering Congress and Exposition. Volume 10: Fluids Engineering. Virtual, Online. November 16-19, (2020) V010T10A049.
[33] N.K. Jain, S. Soni, R. Prajapati, Analytical treatment for vibration analysis of partially cracked orthotropic and FGM submerged cylindrical shell with consideration of fluid-structure interaction, Mech. Based Des. Struct. Mach., 49(4) (2021) 463-486.
[34] C.-C. Yu, A.S. Whittaker, Review of analytical studies on seismic fluid-structure interaction of base-supported cylindrical tanks, Eng. Struct., 233 (2021) 111589.
[35] C. Zhang, Fluid-structure interaction in rectilinear ows: Four analytical solutions, Phys. Fluids., 33(6) (2021) 063611.
[36] H. Afrasiab, M.R. Movahhedy, A. Assempour, Finite element and analytical fluid-structure interaction analysis of the pneumatically actuated diaphragm microvalves, Acta Mech., 222 (2011) 175.
[37] A. Van Hirtum, B. Wu, H. Gao, X.Y. Luo, Constricted channel ow with different cross-section shapes, Eur. J. Mech. B/Fluids., 63 (2017) 1-8.
[38] A. Sohankar, A. Joulaei, M. Mahmoodi, Fluid flow and convective heat transfer in a rotating rectangular microchannel with various aspect ratios, Int. J. Therm. Sci., 172 (Part A) (2022) 107259.
[39] A.P. Boresi, K.P. Chong, J.D. Lee, Elasticity in Engineering Mechanics, John Wiley and Sons, (2010).
[40] V. Vullo, Circular Cylinders and Pressure Vessels: Stress Analysis and Design, 2nd ed., Springer Science and Business Media, (2016).
[41] S. Murugappan, E.J. Gutmark, R.R. Lakhamraju, S. Khosla, Flow-structure interaction effects on a jet emanating from a exible nozzle, Phys. Fluids., 20(11) (2008) 117105.