[1] E. Santecchia, A. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, M. El Mehtedi, S. Spigarelli, A review on fatigue life prediction methods for metals, Adv. Mater. Sci. Eng., (2016) 9573524.
[2] K. Zakaria, S. Abdullah,M. Ghazali, A Review of the Loading Sequence Effects on the Fatigue Life Behaviour of Metallic Materials, J. Eng. Sci. Technol. Rev., 9(5) (2016) 189-200.
[3] J. E. Shigley, Shigley’s mechanical engineering design, Tata McGraw-Hill Education, (2011).
[4] D. Taylor, The theory of critical distances: a new perspective in fracture mechanics, Elsevier, (2010).
[5] H. Neuber, Theory of notch stresses: principles for exact calculation of strength with reference to structural form and material. Vol. 4547. USAEC Office of Technical Information, (1961).
[6] R. E. Peterson, Notch sensitivity, Metal Fatigue, (1959) 293-306.
[7] L. Susmel, Multiaxial Notch Fatigue, Elsevier, (2009).
[8] H. Adib, J. Gilgert, G. Pluvinage, Fatigue life duration prediction for welded spots by volumetric method, Int. J. Fatigue, 26(1) (2004) 8194.
[9] M. El Haddad, K. Smith, T. Topper, Fatigue crack propagation of short cracks, J. Eng. Mater. Technol., 101(1) (1979) 42-46.
[10] G. Qylafku, Z. Azari, N. Kadi, M. Gjonaj, G. Pluvinage, Application of a new model proposal for fatigue life prediction on notches and key-seats, Int. J. Fatigue, 21(8) (1999) 753-760.
[11] L. Susmel, D. Taylor, Estimating Lifetime of Notched Components Subjected to Variable Amplitude Fatigue Loading According to the Elastoplastic Theory of Critical Distances, J. Eng. Mater. Technol., 137(1) (2015) 011008.
[12] R. Seifi, M. R. Mohammadi, Fatigue Life Prediction of Notched Components after Plastic Overload Using Theory of Critical Distance, J. Stress Anal., 5(2) (2021) 1120.
[13] D. Gao, W. Yao, W. Wen, J. Huang, Critical distance model for the fatigue life analysis under lowvelocity impacts of notched specimens, Int. J. Fatigue, 146 (2021) 106164.
[14] R. Seifi, M. R. Mohammadi, Fatigue life estimation of the overloaded notched components, J. Braz. Soc. Mech. Sci. Eng., 42(1) (2019) 51.
[15] A. Khanna, J. Vidler, M. Bermingham, A. Sales, L. Yin, A. Kotousov, A compliance-based method for correcting fatigue crack growth data in the presence of residual stresses, Int. J. Fatigue, 199 (2025) 109066.
[16] P. Ferro, F. Berto, S. M. J. Razavi, M. R. Ayatollahi, The effect of residual stress on fatigue behavior of V-notched components: a review, Procedia Struct. Integr., 3 (2017) 119125.
[17] X. Xiao, V. Okorokov,D. Mackenzie, High cycle fatigue life assessment of notched components with induced compressive residual stress, Int. J. Press. Vessel. Pip., 206 (2023) 105069.
[18] Z. Boˇzi´c, S. Schmauder,H. Wolf, The effect of ˇ residual stresses on fatigue crack propagation in welded stiffened panels, Eng. Fail. Anal., 84 (2018) 346357.
[19] A. M. Mirzaei, A. H. Mirzaei, A. Sapora, P. Cornetti, Strain based finite fracture mechanics for fatigue life prediction of additively manufactured samples,Int. J. Fract., 249(3) (2025) 44.
[20] T. Gao, Y. Tong, Z. Zhan, W. Mei, W. Hu, Q. Meng, Development of a non-local approach for life prediction of notched specimen considering stress/strain gradient and elastic-plastic fatigue damage, Int. J. Damage Mech., 31(7) (2022) 10571081.
[21] S. Wu, J. Liu, J. Lu, Y. Wang, W. Kou, Fatigue life evaluation of notched components affected by multiple factors, Arch. Appl. Mech., 94(7) (2024) 18711889.
[22] J. Liu, X. Pan, Y. Li, X. Chen, A Two-point Method for Multiaxial Fatigue Life Prediction, Acta Mech. Solida Sin., 35(2) (2022) 316327.
[23] C. Zhang, R. Wan, J. He, J. Yu, A multiaxial fatigue life analysis method for automotive components based on LSTM-CNN, Int. J. Fatigue, 199 (2025) 109062.
[24] D. Wang, J.Hogan, L. Lamborn, Safe Life of Line Pipe in Hydrogen Blended Transport. In Pressure Vessels and Piping Conference (Vol. 87448, p. V001T01A024), Am. Soc. Mech. Eng., (2023, July).
[25] G. E. Varelis, A. Briffett, H. Latif, T. Papatheocharis,L. Bernardi, Design Considerations for Hydrogen Pipelines, J. Press. Vessel Technol., 147(5) (2025).
[26] T. Prewitt, S. Esmaeely, Hydrogen Storage Lifecycle Assessment. In Pressure Vessels and Piping Conference (Vol. 88483, p. V002T03A111). Am. Soc. Mech. Eng., (2024, July).
[27] M. Fartas, S. Fouvry, P. Arnaud, S. Garcin, F. Pires, Prediction of fretting fatigue damage under variable loading blocks: Effect of plasticity, Int. J. Fatigue, 199 (2025) 109022.
[28] R. Shi, D. Wei, S. Yang, A stress fatigue lifeprediction model applicable to the whole life stage and complex stress states, Chin. J. Aeronaut., 38(6) (2025) 103412.
[29] Y. Shen, J. Huang, Residual life forecasting and advanced surface damage remanufacturing processes for automotive drive axle shells, Adv. Mech. Eng., 17(2) (2025) 16878132251321054.
[30] W. Wang, H. Liu, C. Zhu, X. Du, J. Tang, Effect of the residual stress on contact fatigue of a wind turbine carburized gear with multiaxial fatigue criteria, Int. J. Mech. Sci., 151 (2019) 263-273.
[31] M. Ciavarella,F. Monno, A comparison of multiaxial fatigue criteria as applied to rolling contact fatigue, Tribol. Int., 43(11) (2010) 21392144.
[32] M. Benedetti,C. Santus, Mean stress and plasticity effect prediction on notch fatigue and crack growth threshold, combining the theory of critical distances and multiaxial fatigue criteria, Fatigue Fract. Eng. Mater. Struct., 42(6) (2019) 12281246.
[33] D. Taylor, Geometrical effects in fatigue: a unifying theoretical model, Int. J. Fatigue, 21(5) (1999) 413420.
[34] S. Vantadori, J. V. Valeo, A. Zanichelli, Fretting fatigue and shot peening: a multiaxial fatigue criterion including residual stress relaxation, Tribol. Int., 151 (2020) 106537.
[35] J. F. Flavenot, N. Skalii, A comparison of multiaxial fatigue criteria incorporating residual stress effects, in International Conference on Biaxial/Multiaxial Fatigue and Fracture (ICBMFF2). (2013).
[36] J. Flavenot, N. Skalli. A Critical Depth Criterion for the Evaluation of Long Life Fatigue Strength under Multiaxial Loading and a Stress Gradient, in International Conference on Biaxial/Multiaxial Fatigue and Fracture (ICBMFF2). (2013).
[37] R. Rice, J. Jackson, J. Bakuckas, S. Thompson, Metallic Materials Properties Development and Standardization (MMPDS) Handbook, NTIS Virginia Scientific Report, (2003).
[38] M. J. Caton, R. John, W. J. Porter, M. Burba, Stress ratio effects on small fatigue crack growth in Ti6Al4V, Int. J. Fatigue, 38 (2012) 36-45.
[39] R. I. Stephens, D. K. Chen, B. W. Hom, Fatigue Crack Growth with Negative Stress Ratio Following Single. In Fatigue Crack Growth Under Spectrum Loads: A Symposium Presented at the Seventy-eighth Annual Meeting, American Society for Testing and Materials, Montreal, Canada, 23-24 June, 1975, RP Wei and RI Stephens, Symposium Cochairmen (Vol. 595, p. 27) (1976). ASTM.
[40] A. Association, International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys, Arlington, VA: The Aluminum Association, (2009).
[41] E. ASTM, 112-96. (2004). Standard test methods for determining average grain size, ASTM International: West Conshohocken, PA, USA, (2004).
[42] A. Standard, E8, Standard Test Methods for Tension Testing of Metallic Materials, Annual book of ASTM standards, 3 (2004) 5772.
[43] A. Standard, E466: Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue Test of Metallic Materials, vol. 03.01, Annual Book of ASTM Standards, West Conshohocken, (2002).
[44] M. Benedetti, V. Fontanari, C. Santus,M. Bandini, Notch fatigue behaviour of shot peened highstrength aluminium alloys: Experiments and predictions using a critical distance method, Int. J. Fatigue, 32(10) (2010) 16001611.
[45] H. Hibbitt, B. Karlsson, P. Sorensen, Abaqus Analysis Users Manual Version 2016, Dassault Systmes Simulia Corp, Providence, (2016).
[46] W. Illg, Fatigue tests on notched and unnotched sheet specimens of 2024-T3 and 7075-T6 aluminum alloys and of SAE 4130 steel with special consideration of the life range from 2 to 10,000 cycles, (1956) NASA Technical Reports Server.