Hygro-Thermo-Elastic Creep Analysis of a Rotating Variable Thickness Multi-Layered Functionally Graded Disc with Weak Interlayer Bonding

Document Type : Original Research Paper

Authors

Department of Mechanical Engineering, University of Qom, Qom, Iran.

10.22084/jrstan.2025.30984.1268

Abstract

This article studies the time-dependent creep response of a rotating multilayered functionally graded disc with variable thickness and weak interlayer bonding, subjected to axisymmetric thermal and moisture fields and a constant magnetic field. The disk thickness and material coefficients are power functions dependent on the radius. Based on the constitutive stress–strain relations, the equilibrium formulation was developed to account for creep terms, and by initially eliminating the creep strain, the primitive stress and displacement fields were obtained analytically. Using Prandtl–Reuss relations for creep modeling, a complete analytical solution was formulated, and the rates of various parameters were evaluated. Lastly, an iterative technique was employed to track the time evolution of various field variables. The governing equations
for the static state were analytically solved to determine the initial values at zero time. Also, the creep evolution equations were solved analytically to obtain the corresponding rate of fields. Subsequently, first the initial response
was established, and then the time-dependent behavior at successive intervals was computed iteratively based on the evaluated rate of fields. The results highlight the significant influence of the grading index, imperfect bonding, angular velocity, hygrothermal loading, and magnetic field on the disc’s response.

Keywords


[1] M. Saadatfar, M. A. Babazadeh, M. Babaelahi, Effect of Convection, Internal Heat Source, and Solar Radiation on the Stress Analysis of a Rotating Functionally Graded Smart Disk. Iranian Journal of Science and Technology, J. Trans. Mech. Eng., 48(3) (2024) 1041-1061.
[2] M. Saadatfar, M. A. Babazadeh, M. Babaelahi, Creep analysis in a rotating variable thickness functionally graded disc with convection heat transfer and heat source, Mech. Time-Depend. Mater., 28(1) (2024) 19-41.
[3] K. Khanna, V. K. Gupta, S. P. Nigam, Modelling and analysis of creep in a variable thickness rotating FGM disc using Tresca and von Mises criteria. Iranian Journal of Science and Technology, Trans. Mech. Eng., 41(2) (2017) 109-119.
[4] M. Bayat, B. Sahari, M. Saleem, E. dezvareh, A. Mohazzab, Analysis of functionally graded rotating disks with parabolic concave thickness applying an exponential function and the Mori-Tanaka scheme, In IOP Conference Series: Materials Science and Engineering (Vol. 17, No. 1, p. 012005). IOP Publishing, (2011, February).
[5] S. Mert Kutsal and S.B. Cokun, Analysis of functionally graded rotating disks via analytical approximation methods, Mech. Based Des. Struct. Mach., 52(9) (2024) 6348-6367.
[6] M. Saadatfar, M. H. Zarandi, . Deformations and stresses of an exponentially graded magneto-electro-elastic non-uniform thickness annular plate which rotates with variable angular speed, Int. J. Appl. Mech., 12(05) (2020) 2050050.
[7] M. Saadatfar and M. Aghaie-Khafri, Hygrothermal analysis of a rotating smart exponentially graded cylindrical shell with imperfect bonding supported by an elastic foundation, Aerosp. Sci. Technol, 43 (2015) 37-50.
[8] P. K. Karimi Zeverdejani and Y. Kiani, Radially symmetric response of an FGM spherical pressure vessel under thermal shock using the thermally nonlinear Lord-Shulman model, Int. J. Press. Vessels Pip., 182 (2020) 104065.
[9] A. Ganczarski and D. Szubartowski, Plane stress state of FGM thick plate under thermal loading, Arch. Appl. Mech., 86(1) (2016) 111-120.
[10] M. Saadatfar and M. Aghaie-Khafri, Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder, Smart  Struct. Syst., 15(6) (2015) 1411-1437.
[11] M. Saadatfar and M. Aghaie-Khafri, Thermoelastic analysis of a rotating functionally graded cylindrical shell with functionally graded sensor and actuator layers on an elastic foundation placed in a constant magnetic field, J. Intell. Mater. Syst. Struct., 27(4) (2016) 512-527.
[12] M. Saadatfar and M. Aghaie-Khafri, On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition, J. Therm. Stresses, 38(8) (2015) 854-881.
[13] M. Saadatfar, Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell with imperfect bonding, Meccanica, 50(8) (2015) 2135-2152.
[14] H. Yaghoobi, A. Fereidoon, M. Khaksari Nouri, S. Mareishi, Thermal buckling analysis of piezoelectric functionally graded plates with temperaturedependent properties, Mech. Adv. Mater. Struct., 22(10) (2015) 864-875.
[15] M. Arefi, E.M.-R. Bidgoli, R. Dimitri, M. Bacciocchi, F. Tornabene, Application of sinusoidal shear deformation theory and physical neutral surface to analysis of functionally graded piezoelectric plate, Compos. B: Eng., 151 (2018) 35-50.
[16] A. M. Zenkour, Bending analysis of piezoelectric exponentially graded fiber-reinforced composite cylinders in hygrothermal environments, J. Mech. Mater. Des., 13(4) (2017) 515-529.
[17] P. Kumar, S. P. Harsha, Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electromechanical load, Compos. Struct., 267 (2021) 113901.
[18] R. Singh, R. K. Saxena, K. Khanna, V. K. Gupta, Finite element modeling to analyze creep behavior of functionally graded rotating discs with exponential reinforcement and thickness profiles, Arch. Appl. Mech., 94(7) (2024) 2039-2058.
[19] M. Sahni, P. D. Mehta, R. Sahni, E. Le´on-Castro, L. F. Espinoza-Audelo, Secondary creep analysis of FG rotating cylinder with exponential, linear and quadratic volume reinforcement, Materials, 15(5) (2022) 1803.
[20] F. Abdolkhani, M. Hashemian, F. Aghadavoudi, N. Habibi, Creep of autofrettaged thick-walled FGM cylindrical vessel. Proceedings of the Institution of Mechanical Engineers, J. Mech. Eng. Sci., 238(6) (2024) 2308-2328.
[21] V. K. Gupta, H. N. Chandrawat, S. B. Singh, S. Ray, Creep behavior of a rotating functionally graded composite disc operating under thermal gradient, Metall. Mater. Trans. A, 35(4) (2004) 1381-1391.
[22] V. K. Gupta, S. B. Singh, H. N. Chandrawat, S. Ray, Steady state creep and material parameters in a rotating disc of AlSiCP composite, Eur. J. Mech. A/Solids., 23(2) (2004) 335-344.
[23] D. Dharmpal, G. Manish, and V. K. Gupta, Creep behavior of rotating FGM disc with linear and hyperbolic thickness profiles, Kragujevac J. Sci., 37 (2015) 35-48.
[24] D. Deepak, V. K. Gupta, A. K. Dham, Creep modeling in functionally graded rotating disc of variable thickness, J. Mech. Sci. Technol., 24(11) (2010) 2221-2232.
[25] M. Rattan, T. Bose, N. Chamoli, S. B. Singh, Creep analysis of anisotropic functionally graded rotating disc subject to thermal gradation, In Materials Physics and Chemistry (pp. 71-88), (2020). Apple Academic Press.
[26] M. Shariyat, M. Ghafourinam, Hygrothermomechanical creep and stress redistribution analysis of thick-walled FGM spheres with temperature and moisture dependent material properties and inelastic radius changes, Int. J. Press. Vessels Pip., 169 (2019) 94-114.
[27] S. H. Kordkheili, M. Livani, Thermoelastic creep analysis of a functionally graded various thickness rotating disk with temperature-dependent material properties, Int. J. Press. Vessels Pip., 111 (2013) 63-74.
[28] D. Dharmpal, G. Manish, V. Gupta, Creep behavior of rotating FGM disc with linear and hyperbolic thickness profiles, Kragujevac J. Sci, 37 (2015) 35-48.
[29] S. Golmakaniyoon, F. Akhlaghi, Time-dependent creep behavior of AlSiC functionally graded beams under in-plane thermal loading, Comput. Mater. Sci., 121 (2016) 182-190.
[30] V. Gupta, S. B. Singh, Mathematical modeling of creep in a functionally graded rotating disc with varying thickness, Regen. Eng. Transl. Med., 2(3) (2016) 126-140.
[31] T. Bose, M. Rattan, Effect of thermal gradation on steady state creep of functionally graded rotating disc, Eur. J. Mech. A/Solids., 67 (2018) 169-176.
[32] A. Loghman, M. Abdollahian, A. Jafarzadeh Jazi, A. G. Arani, Semi-analytical solution for electromagnetothermoelastic creep response of functionally graded piezoelectric rotating disk, Int. J. Therm. Sci., 65 (2013) 254-266.
[33] M. Saadatfar, M A. Babazadeh, and M. Babaelahi,. Creep analysis in a rotating variable thickness functionally graded disc with convection heat transfer and heat source, Mech. Time-Depend. Mater., 28(1) (2024) 19-41.
[34] M. Saadatfar, M. A. Babazadeh, M. Babaelahi, Thermoelastic creep evolution in a variable thickness functionally graded piezoelectric rotating annular plate considering convection and radiation heat transfer, Mech. Based Des. Struct. Mach., 52(8) (2024) 5944-5969.
[35] H. Zharfi, Creep relaxation in FGM rotating disc with nonlinear axisymmetric distribution of heterogeneity, Theor. Appl. Mech. Lett., 9(6) (2019) 382-390.
[36] V. Daghigh, H. Edalati, H. Daghigh, D. M. Belk, K. Nikbin, Time-dependent creep analysis of ultra-high-temperature functionally graded rotating disks of variable thickness, Forces in Mech., 13 (2023) 100235.
[37] H. M. A. Abdalla, D. Casagrande, L. Moro, Thermo-mechanical analysis and optimization of functionally graded rotating disks, J. Strain Anal. Eng. Des., 55(5-6) (2020) 159-171.
[38] O. C. Faruko˘glu, ¨ I, Korkut, Failure stress response of rotating multilayered fiber reinforced annular disk, Mech. Based Des. Struct. Mach., 51(9) (2023) 5164-5178.
[39] A. H. Akbarzadeh, D. Pasini, Multiphysics of Multilayered and Functionally Graded Cylinders Under Prescribed Hygrothermomagnetoelectromechanical Loading,J. Appl. Mech., 81(4) (2014) 041018. 
[40] Y. Suo, H. Cui, B. Mei, D. Li, Y. Jiang, H. Sun, L. Zhang,. Finite element analysis on thermoelastic instability of multidisc clutches involving deformation modes of multilayer material friction disc, J. Tribol., 146(4) (2024) 044601.
[41] P. S. Ghatage, V. R. Kar, P. E. Sudhagar, On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review, Compos. Struct., 236 (2020)111837.
[42] H. M. Wang, Dynamic electromechanical behavior of a triple-layer piezoelectric composite cylinder with imperfect interfaces, Appl. Math. Model., 35(4) (2011) 1765-1781.
[43] Y. D. Li and K. Y. Lee, Interaction between an electrically permeable crack and the imperfect interface in a functionally graded piezoelectric sensor, Int. J. Eng. Sci., 47(3) (2009) 363-371.
[44] D. Guinovart-Sanju´an, R. Rizzoni, R. Rodr´ıguezRamos, R. Guinovart-D´ıaz, J. Bravo-Castillero, R. Alfonso-Rodr´ıguez, F. Lebon, S. Dumont, I. Sevostianov, F. J. Sabina, Behavior of laminated shell composite with imperfect contact between
the layers, Compos. Struct., 176 (2017) 539-546.
[45] H. T. Wang, J. H. Guo, X. Jiang, M. Z. Gao, Bending and vibration of one-dimensional hexagonal quasicrystal layered plates with imperfect interface, Acta Mech., 233(10) (2022) 4029-4046.
[46] M. Shaat, X. L. Gao, K. Li, A. G. Littlefield,. New analytical model for thermomechanical responses of multi-layered structures with imperfect interfaces, Acta Mech., 234(11) (2023) 5779-5818.
[47] W. J. Chang, Transient hygrothermal responses in a solid cylinder by linear theory of coupled heat and moisture, Appl. Math. Model., 18(8) (1994) 467-473.
[48] T. Dai, H. L. Dai, Analysis of a rotating FGMEE circular disk with variable thickness under thermal environmentm, Appl. Math. Model., 45 (2017) 900-924.
[49] M. Bayat, M. Rahimi, M. Saleem, A. H. Mohazzab, I. Wudtke, H. Talebi, One-dimensional analysis for magneto-thermo-mechanical response in a functionally graded annular variable-thickness rotating disk, Appl. Math. Model., 38(19-20) (2014) 4625-4639.
[50] S. Kapuria, G. G. S. Achary, Exact 3D piezoelasticity solution of hybrid crossply plates with damping under harmonic electro-mechanical loads, J. Sound Vib., 282(3-5), 617-634. (2005).
[51] A. H. Akbarzadeh, Magnetoelectroelastic behavior of rotating cylinders resting on an elastic foundation under hygrothermal loading, Smart Mater. Struct., 21(12) (2012) 125013.
[52] H. L. Dai, H. J. Jiang, L. Yang, Time-dependent behaviors of a FGPM hollow sphere under the coupling of multi-fields, Solid State Sci., 14(5) (2012) 587-597.
[53] M. Saadatfar, Multiphysical time-dependent creep response of FGMEE hollow cylinder in thermal and humid environment, Mech. Time-Depend. Mater., 25(2) (2021) 151-173.
[54] T. Dai, H. L. Dai, Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speedAppl. Math. Model., 40(17-18) (2016) 7689-7707.